\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Spin(4)} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{spin_geometry}{}\paragraph*{{Spin geometry}}\label{spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ExceptionalIsomorphisms}{Exceptional isomorphisms}\dotfill \pageref*{ExceptionalIsomorphisms} \linebreak \noindent\hyperlink{euler_class_and_pontryagin_class}{Euler class and Pontryagin class}\dotfill \pageref*{euler_class_and_pontryagin_class} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} $Spin(4)$ is the [[spin group]] in dimension 4, the [[double cover]] of [[SO(4)]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ExceptionalIsomorphisms}{}\subsubsection*{{Exceptional isomorphisms}}\label{ExceptionalIsomorphisms} Let $\mathbb{H}$ be the [[real vector space]] underlying the [[quaternions]]. Notice that [[Spin(3)]] is the group of unit quaternions under quaternion multiplication \begin{displaymath} Spin(3) \simeq S(\mathbb{H}) \,. \end{displaymath} This induces a [[group homomorphism]] \begin{equation} \itexarray{ Spin(3) \times Spin(3) &\longrightarrow& O(4) \\ (e_1, e_2) &\mapsto& \big( q \mapsto e_1 \cdot q \cdot \overline{e_2} \big) } \label{Spin3SquareToO4}\end{equation} \begin{prop} \label{ExceptionalIsoWithSpin3TimesSpin3}\hypertarget{ExceptionalIsoWithSpin3TimesSpin3}{} The [[group homomorphism]] \eqref{Spin3SquareToO4} is a [[double cover]] and hence exhibits an [[isomorphism]] between [[Spin(4)]] and the [[direct product group]] of [[Spin(3)]] with itself: \begin{equation} \vartheta \;\colon\; Spin(3) \times Spin(3) \overset{\simeq}{\longrightarrow} Spin(4) \label{Spin3TimesSpin3IsSpin4}\end{equation} Since the [[action]] of [[Spin(3)]] on the [[imaginary part|imaginary]] [[quaternions]] $\mathbb{H}_{im} \simeq_{\mathbb{R}} \mathbb{R}^3$ is the [[conjugation action]] by unit quaternions, it follows in particular, that the canonical inclusion of [[Spin(3)]] into [[Spin(4)]] is given by the [[diagonal]] morphsm with respect to the identification \eqref{Spin3SquareIsSpin4}: \begin{equation} \itexarray{ Spin(3) &\hookrightarrow& Spin(4) \\ & {}_{\mathllap{\Delta}}\searrow & \Big\downarrow^{ \mathrlap{\simeq} } \\ && Spin(3) \times Spin(3) } \label{Spin3Diagonally}\end{equation} \end{prop} (e.g. \hyperlink{Garrett13}{Garrett 13}) In summary: \begin{prop} \label{}\hypertarget{}{} There is a [[commuting diagram]] of [[Lie groups]] of the form \begin{displaymath} \itexarray{ ( q_1, q_2 ) &\mapsto& (x \mapsto q_1 \cdot x \cdot \overline{q}_2) \\ Sp(1) \times Sp(1) &\overset{\simeq}{\longrightarrow}& Spin(4) \\ \big\downarrow && \big\downarrow \\ Sp(1)\cdot Sp(1) &\overset{\simeq}{\longrightarrow}& SO(4) } \end{displaymath} where \begin{enumerate}% \item in the top left we have [[Sp(1)]] = [[Spin(3)]], \item in the top right we have [[Spin(4)]], \item in the bottom left we have [[Sp(n).Sp(1)|Sp(1).Sp(1)]] \item in the bottom right we have [[SO(4)]] \item the horizontal morphism assigns the [[conjugation action]] of unit [[quaternions]], as indicated, \item the right vertical morphism is the defining [[double cover]], \item the left vertical morphism is the defining [[quotient group]]-projection. \end{enumerate} \end{prop} \begin{remark} \label{ExceptionalIsoViaDynkinDiagrams}\hypertarget{ExceptionalIsoViaDynkinDiagrams}{} \textbf{(exceptional isomorphism via Dynkin diagrams)} Under the [[classification of simple Lie groups]] via [[Dynkin diagrams]], and via the further exceptional isomorphism [[Spin(3)]] $\simeq$ [[SU(2)]], the exceptional isomorphism \eqref{Spin3TimesSpin3IsSpin4} corresponds to the coincidence of the [[D3]] with the [[A3]] diagrams, both with their central node removed: $\backslash$begin\{tikzpicture\} $\backslash$node at (0,1.4) \{$\mathrm{Spin}(4)$\}; $\backslash$node at (3.4,1.4) \{$\mathrm{SU}(2) \times \mathrm{SU}(2)$\}; $\backslash$node at (1.7,1.4) \{$\simeq$\}; $\backslash$node (center) at (0,0) \{\}; $\backslash$node (topright) at (30:1) \{\}; $\backslash$node (left) at (180-30:1) \{\}; $\backslash$node (botright) at (0,-1) \{\}; \%$\backslash$node (D5) at (-2,0) \{\}; \%$\backslash$node (D6) at (-3,0) \{\}; $\backslash$draw\href{center}{draw=lightgray, fill=lightgray} circle (.1); $\backslash$draw\href{topright}{fill=black} circle (.1); $\backslash$draw\href{botright}{draw=lightgray, fill=lightgray} circle (.1); $\backslash$draw\href{left}{fill=black} circle (.1); \%$\backslash$draw\href{D5}{fill=black} circle (.1); \%$\backslash$draw\href{D6}{fill=black} circle (.1); $\backslash$draw\href{center}{lightgray} to (topright); $\backslash$draw\href{center}{lightgray} to (botright); $\backslash$draw\href{center}{lightgray} to (left); \%$\backslash$draw (D5) to (left); \%$\backslash$draw (D6) to (D5); $\backslash$begin\{scope\}shift=\{(3.4,0)\} $\backslash$node (center) at (0,0) \{\}; $\backslash$node (left) at (-1,0) \{\}; $\backslash$node (right) at (+1,0) \{\}; $\backslash$draw\href{center}{draw=lightgray, fill=lightgray} circle (.1); $\backslash$draw\href{left}{fill=black} circle (.1); $\backslash$draw\href{right}{fill=black} circle (.1); $\backslash$draw\href{center}{lightgray} to (left); $\backslash$draw\href{center}{lightgray} to (right); $\backslash$end\{scope\} $\backslash$end\{tikzpicture\} \end{remark} \hypertarget{euler_class_and_pontryagin_class}{}\subsubsection*{{Euler class and Pontryagin class}}\label{euler_class_and_pontryagin_class} \begin{prop} \label{IntegralCohomologyOfClassifyingSpace}\hypertarget{IntegralCohomologyOfClassifyingSpace}{} \textbf{([[integral cohomology]] of [[classifying space]]/[[universal characteristic classes]])} The [[integral cohomology|integral]] [[cohomology ring]] of the [[classifying space]] of [[Spin(3)]] is [[polynomial ring|freely generated]] from $1/4$th of the [[first Pontryagin class]]: \begin{displaymath} H^\bullet \big( B Spin(3), \mathbb{Z} \big) \;\simeq\; \mathbb{Z} \big[ \tfrac{1}{4}p_1 \big] \end{displaymath} Moreover, the [[integral cohomology|integral]] [[cohomology ring]] of the [[classifying space]] of [[Spin(4)]] is [[polynomial ring|freely generated]] from the [[first fractional Pontryagin class]] $\tfrac{1}{2}p_1$ and the combination $\tfrac{1}{2}\big( \chi + \tfrac{1}{2}p_1 \big)$, where $\chi$ is the [[Euler class]]: \begin{displaymath} H^\bullet \big( B Spin(4), \mathbb{Z} \big) \;\simeq\; \mathbb{Z} \big[ \tfrac{1}{2}p_1 \,, \tfrac{1}{2}\big( \chi+ \tfrac{1}{2}p_1 \big) \big] \end{displaymath} Finally, under the [[exceptional isomorphism]] \eqref{Spin3SquareToO4} $\vartheta \;\colon\; Spin(3) \times Spin(3) \overset{\simeq}{\to} Spin(4)$ these classes are related by \begin{displaymath} \begin{aligned} \vartheta^\ast \left( \tfrac{1}{2}p_1 \right) & = \phantom{-} \tfrac{1}{4}p_1 \otimes 1 + 1 \otimes \tfrac{1}{4} p_1 \\ \vartheta^\ast \Big( \tfrac{1}{2} \big( \chi + \tfrac{1}{2} p_1 \big) \Big) & = \phantom{-} \phantom{ 1 \otimes \tfrac{1}{4}p_1 + } 1 \otimes \tfrac{1}{4}p_1 \\ \text{hence} \phantom{AAAA} \vartheta^\ast\big( \chi \big) \phantom{ + \tfrac{1}{2} p_1 \big) \Big) } & = - \tfrac{1}{4}p_1 \otimes 1 + 1 \otimes \tfrac{1}{4} p_1 \end{aligned} \end{displaymath} Therefore, under the canonical [[diagonal]] inclusion $\iota \colon Spin(3) \overset{\Delta}{\hookrightarrow} Spin(3) \times Spin(3) \simeq Spin(4)$ \eqref{Spin3Diagonally} we have \begin{displaymath} \begin{aligned} \iota^\ast \left( \tfrac{1}{2}p_1 \right) & = \tfrac{1}{2}p_1 \\ \iota^\ast \big( \chi \big) & = 0 \end{aligned} \end{displaymath} \end{prop} (e.g. \hyperlink{CadekVanzura98}{Čadek-Vanžura 98, Lemma 2.1}) linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include low dimensional rotation groups -- table]] $\backslash$linebreak \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Martin Čadek]], [[Jiří Vanžura]], \emph{On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes}, Colloquium Mathematicum 1998, 76 (2), pp 213-228 (\href{http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-cmv76z2p213bwm}{web}) \item [[Paul Garrett]], \emph{Sporadic isogenies to orthogonal groups}, July 2013 (\href{http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf}{pdf}) \end{itemize} [[!redirects Spin4]] \end{document}