\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Spin geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] This page collects links related to the book \begin{itemize}% \item [[H. Blaine Lawson]], [[Marie-Louise Michelsohn]] \emph{Spin geometry} Princeton University Press (1989) \end{itemize} on [[spin geometry]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{chapter_i_clifford_algebras_spin_groups_and_their_representations}{Chapter I Clifford algebras, Spin groups and Their Representations}\dotfill \pageref*{chapter_i_clifford_algebras_spin_groups_and_their_representations} \linebreak \noindent\hyperlink{1_clifford_algebras}{1 Clifford algebras}\dotfill \pageref*{1_clifford_algebras} \linebreak \noindent\hyperlink{2_the_group__and_}{2 The group $Pin$ and $Spin$}\dotfill \pageref*{2_the_group__and_} \linebreak \noindent\hyperlink{3_the_algebras__and_}{3 The algebras $CL_n$ and $Cl_{r,s}$}\dotfill \pageref*{3_the_algebras__and_} \linebreak \noindent\hyperlink{4_classification}{4 Classification}\dotfill \pageref*{4_classification} \linebreak \noindent\hyperlink{5_representations}{5 Representations}\dotfill \pageref*{5_representations} \linebreak \noindent\hyperlink{6_lie_algebra_structures}{6 Lie algebra structures}\dotfill \pageref*{6_lie_algebra_structures} \linebreak \noindent\hyperlink{7_some_direct_applications_to_geometry}{7 Some direct applications to geometry}\dotfill \pageref*{7_some_direct_applications_to_geometry} \linebreak \noindent\hyperlink{8_some_further_applications_to_the_theory_of_lie_groups}{8 Some further applications to the theory of Lie groups}\dotfill \pageref*{8_some_further_applications_to_the_theory_of_lie_groups} \linebreak \noindent\hyperlink{9_ktheory_and_the_atiyahbottshapiro_construction}{9 K-Theory and the Atiyah-Bott-Shapiro construction}\dotfill \pageref*{9_ktheory_and_the_atiyahbottshapiro_construction} \linebreak \noindent\hyperlink{10_krtheory_and_the_periodicity_theorem}{10 KR-theory and the $(1,1)$-Periodicity theorem}\dotfill \pageref*{10_krtheory_and_the_periodicity_theorem} \linebreak \noindent\hyperlink{chapter_ii_spin_geometry_and_the_dirac_operator}{Chapter II Spin Geometry and the Dirac Operator}\dotfill \pageref*{chapter_ii_spin_geometry_and_the_dirac_operator} \linebreak \noindent\hyperlink{1_spin_structures_on_vector_bundles}{1 Spin structures on vector bundles}\dotfill \pageref*{1_spin_structures_on_vector_bundles} \linebreak \noindent\hyperlink{2_spin_manifolds_and_spin_cobordism}{2 Spin manifolds and Spin cobordism}\dotfill \pageref*{2_spin_manifolds_and_spin_cobordism} \linebreak \noindent\hyperlink{3_clifford_and_spinor_bundle}{3 Clifford and spinor bundle}\dotfill \pageref*{3_clifford_and_spinor_bundle} \linebreak \noindent\hyperlink{4_connection_on_spinor_bundle}{4 Connection on spinor bundle}\dotfill \pageref*{4_connection_on_spinor_bundle} \linebreak \noindent\hyperlink{5_the_dirac_operators}{5 The Dirac operators}\dotfill \pageref*{5_the_dirac_operators} \linebreak \noindent\hyperlink{6_the_fundamental_elliptic_operators}{6 The fundamental elliptic operators}\dotfill \pageref*{6_the_fundamental_elliptic_operators} \linebreak \noindent\hyperlink{7_linear_dirac_operators}{7 $Cl_k$-linear Dirac operators}\dotfill \pageref*{7_linear_dirac_operators} \linebreak \noindent\hyperlink{8_vanishing_theorems_and_some_applications}{8 Vanishing theorems and some applications}\dotfill \pageref*{8_vanishing_theorems_and_some_applications} \linebreak \noindent\hyperlink{chapter_iii_index_theorems}{Chapter III Index Theorems}\dotfill \pageref*{chapter_iii_index_theorems} \linebreak \noindent\hyperlink{chapter_iv_applications_in_geometry_and_topology}{Chapter IV Applications in Geometry and Topology}\dotfill \pageref*{chapter_iv_applications_in_geometry_and_topology} \linebreak \hypertarget{chapter_i_clifford_algebras_spin_groups_and_their_representations}{}\subsection*{{Chapter I Clifford algebras, Spin groups and Their Representations}}\label{chapter_i_clifford_algebras_spin_groups_and_their_representations} \hypertarget{1_clifford_algebras}{}\subsubsection*{{1 Clifford algebras}}\label{1_clifford_algebras} \begin{itemize}% \item [[Clifford algebra]] \end{itemize} \hypertarget{2_the_group__and_}{}\subsubsection*{{2 The group $Pin$ and $Spin$}}\label{2_the_group__and_} \begin{itemize}% \item [[spin group]] \end{itemize} \hypertarget{3_the_algebras__and_}{}\subsubsection*{{3 The algebras $CL_n$ and $Cl_{r,s}$}}\label{3_the_algebras__and_} \hypertarget{4_classification}{}\subsubsection*{{4 Classification}}\label{4_classification} \hypertarget{5_representations}{}\subsubsection*{{5 Representations}}\label{5_representations} \begin{itemize}% \item [[spin representation]] \end{itemize} \hypertarget{6_lie_algebra_structures}{}\subsubsection*{{6 Lie algebra structures}}\label{6_lie_algebra_structures} \hypertarget{7_some_direct_applications_to_geometry}{}\subsubsection*{{7 Some direct applications to geometry}}\label{7_some_direct_applications_to_geometry} \hypertarget{8_some_further_applications_to_the_theory_of_lie_groups}{}\subsubsection*{{8 Some further applications to the theory of Lie groups}}\label{8_some_further_applications_to_the_theory_of_lie_groups} \hypertarget{9_ktheory_and_the_atiyahbottshapiro_construction}{}\subsubsection*{{9 K-Theory and the Atiyah-Bott-Shapiro construction}}\label{9_ktheory_and_the_atiyahbottshapiro_construction} \begin{itemize}% \item [[K-theory]] \item [[Atiyah-Bott-Shapiro isomorphism]] \end{itemize} \hypertarget{10_krtheory_and_the_periodicity_theorem}{}\subsubsection*{{10 KR-theory and the $(1,1)$-Periodicity theorem}}\label{10_krtheory_and_the_periodicity_theorem} \begin{itemize}% \item [[KR-theory]] \end{itemize} \hypertarget{chapter_ii_spin_geometry_and_the_dirac_operator}{}\subsection*{{Chapter II Spin Geometry and the Dirac Operator}}\label{chapter_ii_spin_geometry_and_the_dirac_operator} \hypertarget{1_spin_structures_on_vector_bundles}{}\subsubsection*{{1 Spin structures on vector bundles}}\label{1_spin_structures_on_vector_bundles} \begin{itemize}% \item [[spin structure]] \end{itemize} \hypertarget{2_spin_manifolds_and_spin_cobordism}{}\subsubsection*{{2 Spin manifolds and Spin cobordism}}\label{2_spin_manifolds_and_spin_cobordism} \begin{itemize}% \item [[spin cobordism]] \end{itemize} \hypertarget{3_clifford_and_spinor_bundle}{}\subsubsection*{{3 Clifford and spinor bundle}}\label{3_clifford_and_spinor_bundle} \begin{itemize}% \item [[Clifford bundle]] \item [[spinor bundle]] \end{itemize} \hypertarget{4_connection_on_spinor_bundle}{}\subsubsection*{{4 Connection on spinor bundle}}\label{4_connection_on_spinor_bundle} \begin{itemize}% \item [[connection on a bundle]] \item [[spin connection]] \end{itemize} \hypertarget{5_the_dirac_operators}{}\subsubsection*{{5 The Dirac operators}}\label{5_the_dirac_operators} \begin{itemize}% \item [[Dirac operator]] \end{itemize} \hypertarget{6_the_fundamental_elliptic_operators}{}\subsubsection*{{6 The fundamental elliptic operators}}\label{6_the_fundamental_elliptic_operators} \begin{itemize}% \item [[elliptic operator]] \end{itemize} \hypertarget{7_linear_dirac_operators}{}\subsubsection*{{7 $Cl_k$-linear Dirac operators}}\label{7_linear_dirac_operators} \begin{itemize}% \item [[fiber integration in K-theory]] \item [[index]] \end{itemize} \hypertarget{8_vanishing_theorems_and_some_applications}{}\subsubsection*{{8 Vanishing theorems and some applications}}\label{8_vanishing_theorems_and_some_applications} \hypertarget{chapter_iii_index_theorems}{}\subsection*{{Chapter III Index Theorems}}\label{chapter_iii_index_theorems} \begin{itemize}% \item [[index theory]] \item [[index of a Dirac operator]] \end{itemize} \hypertarget{chapter_iv_applications_in_geometry_and_topology}{}\subsection*{{Chapter IV Applications in Geometry and Topology}}\label{chapter_iv_applications_in_geometry_and_topology} \begin{itemize}% \item [[spin geometry]] \end{itemize} category: reference \end{document}