\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Stückelberg-Petermann renormalization group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{scaling_transformations_and_running_coupling_constants}{Scaling transformations and ``running coupling constants''}\dotfill \pageref*{scaling_transformations_and_running_coupling_constants} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]] the \emph{Stückelberg-Petermann renormalization group} (\hyperlink{StiecelbergPetermann53}{Stückelberg-Petermann 53}) is the (original) incarnation of the [[renormalization group]] in the perspective of [[causal perturbation theory]]: It is the group (def. \ref{StueckelbergPetermannRenormalizationGroup} below) of perturbative [[interaction vertex redefinitions]] (def. \ref{InteractionVertexRedefinition}) which is such that any two choices of [[S-matrix]] [[renormalization schemes]] $\mathcal{S}, \mathcal{S}'$ are related by a unique [[vertex redefinition]] $\mathcal{Z}$ via [[precomposition]] \begin{displaymath} \mathcal{S}' \;=\; \mathcal{S} \circ \mathcal{Z} \,. \end{displaymath} This statement (prop. \ref{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition} below) is also called the \emph{[[main theorem of perturbative renormalization]]}. If [[scaling transformations]] on [[spacetime]] happen to transform [[renormalization schemes]] into each other, then this [[main theorem of perturbative renormalization]] (prop. \ref{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition}) directly implies that every [[scaling transformation]] uniquely corresponds to a [[interaction vertex redefinition]], or conversely that the [[vertex redefinitions]] are given as funcitons of scale. As such they are also referred to as \emph{[[running coupling constants]]} (def. \ref{GellMannLowTransformations} below). Beware that these do not in general form a [[group]] but a [[group cocycle]], the \emph{[[Gell-Mann-Low renormalization cocycle]]} (prop. \ref{CocyclePropertyOfRunningCouplingConstants} below. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The elements of the Stückelberg-Petermann renormalization group are \emph{perturbative [[interaction vertex redefinitions]]} (def. \ref{InteractionVertexRedefinition} below). These [[action|act]] on [[S-matrix]] [[renormalization schemes|(``re''-)normalization schemes]] by [[precomposition]] (def. \ref{CausalFactorizationSatisfiedByCompositionOfSMatrixWithVertexRedefinition}) and this action is [[free action|free]] and [[transitive action|transitive]] (prop. \ref{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition} below). In this way these [[vertex redefinitions]] translate between different choices of [[renormalization|(``re''-)normalization]], and as such they form the \emph{Stückelerg-Petermann renormalization group} (def. \ref{StueckelbergPetermannRenormalizationGroup}) below. $\,$ \begin{defn} \label{InteractionVertexRedefinition}\hypertarget{InteractionVertexRedefinition}{} \textbf{([[perturbative interaction vertex redefinition]])} Let $(E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H)$ be a [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacuum]] (\href{S-matrix#VacuumFree}{this def.}). A \emph{[[perturbative interaction vertex redefinition]]} (or just \emph{[[vertex redefinition]]}, for short) is an [[endofunction]] \begin{displaymath} \mathcal{Z} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \longrightarrow LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \end{displaymath} on [[local observables]] with formal parameters adjoined (\href{S-matrix#FormalParameters}{this def.}) such that there exists a sequence $\{Z_k\}_{k \in \mathbb{N}}$ of [[continuous linear functionals]], symmetric in their arguments, of the form \begin{displaymath} \left( {\, \atop \,} LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle {\, \atop \,} \right)^{\otimes^k_{\mathbb{C}[ [ \hbar, g, j] ]}} \longrightarrow LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \end{displaymath} such that for all $g S_{int} + j A \in LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle$ the following conditions hold: \begin{enumerate}% \item (perturbation) \begin{enumerate}% \item $Z_0(g S_{int + j A}) = 0$ \item $Z_1(g S_{int} + j A) = g S_{int} + j A$ \item and \begin{displaymath} \begin{aligned} \mathcal{Z}(g S_{int} + j A) & = Z \exp_\otimes( g S_{int} + j A ) \\ & \coloneqq \underset{k \in \mathbb{N}}{\sum} \frac{1}{k!} Z_k( \underset{ k \, \text{args} }{ \underbrace{ g S_{int} + j A , \cdots, g S_{int} + j A } } ) \end{aligned} \end{displaymath} \end{enumerate} \item (field independence) The [[local observable]] $\mathcal{Z}(g S_{int} + j A)$ depends on the [[field histories]] only through its argument $g S_{int} + j A$, hence by the [[chain rule]]: \begin{equation} \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \mathcal{Z}(g S_{int} + j A) \;=\; \mathcal{Z}'_{g S_{int} + j A} \left( \frac{\delta}{\delta \mathbf{\Phi}^a(x)} (g S_{int} + j A) \right) \label{FieldIndependenceVertexRedefinition}\end{equation} \end{enumerate} \end{defn} The following proposition should be compared to the axiom of \emph{[[causal additivity]]} of the [[S-matrix]] scheme (\href{S-matrix#eq:CausalAdditivity}{this equation}): \begin{prop} \label{InteractionVertexRedefinitionAdditivity}\hypertarget{InteractionVertexRedefinitionAdditivity}{} \textbf{(local additivity of [[vertex redefinitions]])} Let $(E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H)$ be a [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacuum]] (\href{S-matrix#VacuumFree}{this def.}) and let $\mathcal{Z}$ be a [[vertex redefinition]] (def. \ref{InteractionVertexRedefinition}). Then for all [[local observables]] $O_0, O_1, O_2 \in LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ]\langle g, j\rangle$ with spacetime support denoted $supp(O_i) \subset \Sigma$ (\href{A+first+idea+of+quantum+field+theory#SpacetimeSupport}{this def.}) we have \begin{enumerate}% \item (local additivity) \begin{displaymath} \begin{aligned} & \left( supp(O_1) \cap supp(O_2) = \emptyset \right) \\ & \Rightarrow \phantom{AA} \mathcal{Z}( O_0 + O_1 + O_2) = \mathcal{Z}( O_0 + O_1 ) - \mathcal{Z}(O_0) + \mathcal{Z}(O_0 + O_2) \end{aligned} \,. \end{displaymath} \item (preservation of spacetime support) \begin{displaymath} supp \left( {\, \atop \,} \mathcal{Z}(O_0 + O_1) - \mathcal{Z}(O_0) {\, \atop \,} \right) \;\subset\; supp(O_1) \end{displaymath} hence in particular \begin{displaymath} supp \left( {\, \atop \,} \mathcal{Z}(O_1) {\, \atop \,} \right) = supp(O_1) \end{displaymath} \end{enumerate} \end{prop} (\hyperlink{Duetsch18}{Dütsch 18, exercise 3.98}) \begin{proof} Under the inclusion \begin{displaymath} LocObs(E_{\text{BV-BRST}}) \hookrightarrow PolyObs(E_{\text{BV-BRST}}) \end{displaymath} of [[local observables]] into [[polynomial observables]] we may think of each $Z_k$ as a [[generalized function]], as for [[time-ordered products]] in \href{S-matrix#NotationForTimeOrderedProductsAsGeneralizedFunctions}{this remark}. Hence if \begin{displaymath} O_j = \underset{\Sigma}{\int} j^\infty_\Sigma( \mathbf{L}_j ) \end{displaymath} is the [[transgression of variational differential forms|transgression]] of a [[Lagrangian density]] $\mathbf{L}$ we get \begin{displaymath} Z_k( (O_1 + O_2 + O_3) , \cdots , (O_1 + O_2 + O_3) ) = \underset{ j_1, \cdots, j_k \in \{0,1,2\} }{\sum} \underset{\Sigma^{k}}{\int} Z( \mathbf{L}_{j_1}(x_1) , \cdots , \mathbf{L}_{j_k}(x_k) ) \,. \end{displaymath} Now by definition $Z_k(\cdots)$ is in the subspace of [[local observables]], i.e. those [[polynomial observables]] whose [[coefficient]] [[distributions]] are [[support of a distribution|supported]] on the [[diagonal]], which means that \begin{displaymath} \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \frac{\delta}{\delta \mathbf{\Phi}^b(y)} Z_{k}(\cdots) = 0 \phantom{AA} \text{for} \phantom{AA} x \neq y \end{displaymath} Together with the axiom ``field independence'' \eqref{FieldIndependenceVertexRedefinition} this means that the support of these generalized functions in the [[integrand]] here must be on the [[diagonal]], where $x_1 = \cdots = x_k$. By the assumption that the spacetime supports of $O_1$ and $O_2$ are disjoint, this means that only the summands with $j_1, \cdots, j_k \in \{0,1\}$ and those with $j_1, \cdots, j_k \in \{0,2\}$ contribute to the above sum. Removing the overcounting of those summands where all $j_1, \cdots, j_k \in \{0\}$ we get \begin{displaymath} \begin{aligned} & Z_k\left( {\, \atop \,} (O_1 + O_2 + O_3) , \cdots , (O_1 + O_2 + O_3) {\, \atop \,} \right) \\ & = \underset{ j_1, \cdots, j_k \in \{0,1\} }{\sum} \underset{\Sigma^{k}}{\int} Z( \mathbf{L}_{j_1}(x_1) , \cdots , \mathbf{L}_{j_k}(x_k) ) \\ & \phantom{=} - \underset{ j_1, \cdots, j_k \in \{0\} }{\sum} \underset{\Sigma^{k}}{\int} Z( \mathbf{L}_{j_1}(x_1) , \cdots , \mathbf{L}_{j_k}(x_k) ) \\ & \phantom{=} - \underset{ j_1, \cdots, j_k \in \{0,2\} }{\sum} \underset{\Sigma^{k}}{\int} Z( \mathbf{L}_{j_1}(x_1) , \cdots , \mathbf{L}_{j_k}(x_k) ) \\ & = Z_k\left( {\, \atop \,} (O_0 + O_1), \cdots, (O_0 + O_1) {\, \atop \,}\right) - Z_k\left( {\, \atop \,} O_0, \cdots, O_0 {\, \atop \,} \right) + Z_k\left( {\, \atop \,} (O_0 + O_2), \cdots, (O_0 + O_2) {\, \atop \,} \right) \end{aligned} \,. \end{displaymath} This directly implies the claim. \end{proof} As a corollary we obtain: \begin{prop} \label{CausalFactorizationSatisfiedByCompositionOfSMatrixWithVertexRedefinition}\hypertarget{CausalFactorizationSatisfiedByCompositionOfSMatrixWithVertexRedefinition}{} \textbf{([[composition]] of [[S-matrix]] scheme with [[vertex redefinition]] is again [[S-matrix]] scheme)} Let $(E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H)$ be a [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacuum]] (\href{S-matrix#VacuumFree}{this def.}) and let $\mathcal{Z}$ be a [[vertex redefinition]] (def. \ref{InteractionVertexRedefinition}). Then for \begin{displaymath} \mathcal{S} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \longrightarrow PolyObs(E_{\text{BV-BRST}})_{mc}((\hbar))[ [ g,j ] ] \end{displaymath} and [[S-matrix]] scheme (\href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}), the [[composition|composite]] \begin{displaymath} \mathcal{S} \circ \mathcal{Z} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \overset{\mathcal{Z}}{\longrightarrow} LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j\rangle \overset{\mathcal{S}}{\longrightarrow} PolyObs(E_{\text{BV-BRST}})_{mc}((\hbar))[ [ g,j ] ] \end{displaymath} is again an [[S-matrix]] scheme. Moreover, if $\mathcal{S}$ satisfies the [[renormalization condition]] ``field independence'' (\href{S-matrix#BasicConditionsRenormalization}{this prop.}), then so does $\mathcal{S} \circ \mathcal{Z}$. \end{prop} (e.g \hyperlink{Duetsch18}{Dütsch 18, theorem 3.99 (b)}) \begin{proof} It is clear that [[causal order]] of the spacetime supports implies that they are in particular [[disjoint subset|disjoint]] \begin{displaymath} \left( {\, \atop \,} supp(O_1) {\vee\!\!\!\wedge} supp(O_2) {\, \atop \,} \right) \phantom{AA} \Rightarrow \phantom{AA} \left( {\, \atop \,} supp(O_1) \cap supp(O_) \;=\; \emptyset {\, \atop \,} \right) \end{displaymath} Therefore the local additivity of $\mathcal{Z}$ (prop. \ref{InteractionVertexRedefinitionAdditivity}) and the [[causal factorization]] of the [[S-matrix]] (\href{S-matrix#DysonCausalFactorization}{this remark}) imply the causal factorization of the composite: \begin{displaymath} \begin{aligned} \mathcal{S} \left( {\, \atop \,} \mathcal{Z}(O_1 + O_2) {\, \atop \,} \right) & = \mathcal{S} \left( {\, \atop \,} \mathcal{Z}(O_1) + \mathcal{Z}(O_2) {\, \atop \,} \right) \\ & = \mathcal{S} \left( {\, \atop \,} \mathcal{Z}(O_1) {\, \atop \,} \right) \, \mathcal{S} \left( {\, \atop \,} \mathcal{Z}(O_2) {\, \atop \,} \right) \,. \end{aligned} \end{displaymath} But by \href{S-matrix#CausalFactorizationAlreadyImpliesSMatrix}{this prop.} this implies in turn [[causal additivity]] and hence that $\mathcal{S} \circ \mathcal{Z}$ is itself an S-matrix scheme. Finally that $\mathcal{S} \circ \mathcal{Z}$ satisfies ``field indepndence'' if $\mathcal{S}$ does is immediate by the [[chain rule]], given that $\mathcal{Z}$ satisfies this condition by definition. \end{proof} \begin{prop} \label{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition}\hypertarget{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition}{} \textbf{(any two [[S-matrix]] [[renormalization schemes]] differ by a unique [[vertex redefinition]])} Let $(E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H)$ be a [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacuum]] (\href{S-matrix#VacuumFree}{this def.}). Then for $\mathcal{S}, \mathcal{S}'$ any two [[S-matrix]] schemes (\href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}) which both satisfy the [[renormalization condition]] ``field independence'', the there exists a unique [[vertex redefinition]] $\mathcal{Z}$ (def. \ref{InteractionVertexRedefinition}) relating them by [[composition]], i. e. such that \begin{displaymath} \mathcal{S}' \;=\; \mathcal{S} \circ \mathcal{Z} \,. \end{displaymath} \end{prop} (See any of the references at \emph{[[main theorem of perturbative renormalization]]}.) \begin{proof} By applying both sides of the equation to linear combinations of local observables of the form $\kappa_1 O_1 + \cdots + \kappa_k O_k$ and then taking [[derivatives]] with respect to $\kappa$ at $\kappa_j = 0$ (as in \href{S-matrix#TimeOrderedProductsFromSMatrixScheme}{this example}) we get that the equation in question implies \begin{displaymath} (i \hbar)^k \frac{ \partial^k }{ \partial \kappa_1 \cdots \partial \kappa_k } \mathcal{S}'( \kappa_1 O_1 + \cdots + \kappa_k O_k ) \vert_{\kappa_1, \cdots, \kappa_k = 0} \;=\; (i \hbar)^k \frac{ \partial^k }{ \partial \kappa_1 \cdots \partial \kappa_k } \mathcal{S} \circ \mathcal{Z}( \kappa_1 O_1 + \cdots + \kappa_k O_k ) \vert_{\kappa_1, \cdots, \kappa_k = 0} \end{displaymath} which in components means that \begin{displaymath} \begin{aligned} T'_k( O_1, \cdots, O_k ) & = \underset{ 2 \leq n \leq k }{\sum} \frac{1}{n!} (i \hbar)^{k-n} \underset{ { { I_1 \sqcup \cdots \sqcup I_n } \atop { = \{1, \cdots, k\}, } } \atop { I_1, \cdots, I_n \neq \emptyset } }{\sum} T_n \left( {\, \atop \,} Z_{{\vert I_1\vert}}\left( (O_{i_1})_{i_1 \in I_1} \right), \cdots, Z_{{\vert I_n\vert}}\left( (O_{i_n})_{i_n \in I_n} \right), {\, \atop \,} \right) \\ & \phantom{=} + Z_k( O_1,\cdots, O_k ) \end{aligned} \end{displaymath} where $\{T'_k\}_{k \in \mathbb{N}}$ are the [[time-ordered products]] corresponding to $\mathcal{S}'$ (by \href{S-matrix#TimeOrderedProductsFromSMatrixScheme}{this example}) and $\{T_k\}_{k \in \mathcal{N}}$ those correspondong to $\mathcal{S}$. Here the sum on the right runs over all ways that in the composite $\mathcal{S} \circ \mathcal{Z}$ a $k$-ary operation arises as the composite of an $n$-ary time-ordered product applied to the ${\vert I_i\vert}$-ary components of $\mathcal{Z}$, for $i$ running from 1 to $n$; except for the case $k = n$, which is displayed separately in the second line. This shows that if $\mathcal{Z}$ exists, then it is unique, because its coefficients $Z_k$ are [[induction|inductively]] in $k$ given by the expressions \begin{displaymath} \begin{aligned} & Z_k( O_1,\cdots, O_k ) \\ & = T'_k( O_1, \cdots, O_k ) \;-\; \underset{ (T \circ \mathcal{Z}_{\lt k})_k }{ \underbrace{ \underset{ 2 \leq n \leq k }{\sum} \frac{1}{n!} (i \hbar)^{k-n} \underset{ { { I_1 \sqcup \cdots \sqcup I_n } \atop { = \{1, \cdots, k\}, } } \atop { I_1, \cdots, I_n \neq \emptyset } }{\sum} T_n \left( Z_{{\vert I_1\vert}}( (O_{i_1})_{i_1 \in I_1} ), \cdots, Z_{{\vert I_n\vert}}( (O_{i_n})_{i_n \in I_n} ), \right) } } \end{aligned} \end{displaymath} (The symbol under the brace is introduced as a convenient shorthand for the term above the brace.) Hence it remains to see that the $Z_k$ defined this way satisfy the conditions in def. \ref{InteractionVertexRedefinition}. The condition ``perturbation'' is immediate from the corresponding condition on $\mathcal{S}$ and $\mathcal{S}'$. Similarly the condition ``field independence'' follows immediately from the assumoption that $\mathcal{S}$ and $\mathcal{S}'$ satisfy this condition. It only remains to see that $Z_k$ indeed takes values in [[local observables]]. Given that the [[time-ordered products]] a priori take values in the larrger space of [[microcausal polynomial observables]] this means to show that the spacetime support of $Z_k$ is on the [[diagonal]]. But observe that, as indicated in the above formula, the term over the brace may be understood as the coefficient at order $k$ of the [[exponential series]]-expansion of the [[composition|composite]] $\mathcal{S} \circ \mathcal{Z}_{\lt k}$, where \begin{displaymath} \mathcal{Z}_{\lt k} \;\coloneqq\; \underset{ n \in \{1, \cdots, k-1\} }{\sum} \frac{1}{n!} Z_n \end{displaymath} is the truncation of the [[vertex redefinition]] to degree $\lt k$. This truncation is clearly itself still a vertex redefinition (according to def. \ref{InteractionVertexRedefinition}) so that the composite $\mathcal{S} \circ \mathcal{Z}_{\lt k}$ is still an [[S-matrix]] scheme (by prop. \ref{CausalFactorizationSatisfiedByCompositionOfSMatrixWithVertexRedefinition}) so that the $(T \circ \mathcal{Z}_{\lt k})_k$ are [[time-ordered products]] (by \href{S-matrix#TimeOrderedProductsFromSMatrixScheme}{this example}). So as we solve $\mathcal{S}' = \mathcal{S} \circ \mathcal{Z}$ inductively in degree $k$, then for the induction step in degree $k$ the expressions $T'_{\lt k}$ and $(T \circ \mathcal{Z})_{\lt k}$ agree and are both time-ordered products. By \href{S-matrix#RenormalizationIsInductivelyExtensionToDiagonal}{this prop.} this implies that $T'_{k}$ and $(T \circ \mathcal{Z}_{\lt k})_{k}$ agree away from the diagonal. This means that their difference $Z_k$ is supported on the diagonal, and hence is indeed local. \end{proof} \begin{defn} \label{StueckelbergPetermannRenormalizationGroup}\hypertarget{StueckelbergPetermannRenormalizationGroup}{} \textbf{([[Stückelberg-Petermann renormalization group]] of [[vertex redefinitions]])} Let $(E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H)$ be a [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacuum]] (\href{S-matrix#VacuumFree}{this def.}). Then prop. \ref{CausalFactorizationSatisfiedByCompositionOfSMatrixWithVertexRedefinition} and prop \ref{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition} together says that (``[[main theorem of perturbative renormalization]]''): \begin{enumerate}% \item the [[vertex redefinitions]] $\mathcal{Z}$ (def. \ref{InteractionVertexRedefinition}) form a [[group]] under [[composition]]; \item the set of [[S-matrix]] [[renormalization schemes|(``re''-)normalization schemes]] (\href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}, \href{S-matrix#calSFunctionIsRenormalizationScheme}{this remark}) satisfying the [[renormalization condition]] ``field independence'' (\href{S-matrix#BasicConditionsRenormalization}{this prop.}) is a [[torsor]] over this group, meaning that the action is [[regular action|regular]] on this set, in that any two are S-matrix (``re''-)normalization schemes are related by a unique vertex redefinition. \end{enumerate} This group is called the (large) \emph{[[Stückelberg-Petermann renormalization group]]}. Typically one imposes a set of [[renormalization conditions]] (\href{S-matrix#RenormalizationConditions}{this def.}) and then the corresponding [[subgroup]] of [[vertex redefinitions]] preserving these. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{scaling_transformations_and_running_coupling_constants}{}\subsubsection*{{Scaling transformations and ``running coupling constants''}}\label{scaling_transformations_and_running_coupling_constants} A priori the Stückelberg-Petermann renormalization group is not about [[scaling transformations]]. But if [[scaling transformations]] happen to produce new S-matrices/renormalization schemes from given ones, then the [[main theorem of perturbative renormalization]] induces for each such scaling transformation a re-definition of interaction Lagrangian densities, this is the [[Gell-Mann-Low renormalization cocycle]] (\hyperlink{GellMannLow54}{Gell-Mann \& Low 54}, \hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09}) for review see (\hyperlink{Duetsch18}{Dütsch 18, section 3.5.3}). \begin{defn} \label{GellMannLowTransformations}\hypertarget{GellMannLowTransformations}{} \textbf{([[running coupling constants]] under [[scale transformations]])} Let \begin{displaymath} vac \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}_{kin}, \Delta_H ) \end{displaymath} be a [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacuum]] (according to \href{S-matrix#VacuumFree}{this def.}) around which we consider [[interacting field theory|interacting]] [[perturbative QFT]]. Assume that in fact \begin{enumerate}% \item the [[free field]] [[vacuum]] $vac = vac(m)$ depends on a [[mass]] parameter, and with it the choice $\mathcal{S}_{vac(m)}$ of [[renormalization scheme|normalization scheme]], \item under [[scaling transformations]] on [[local observables]] $\sigma_\rho$ (\hyperlink{Duetsch18}{Dütsch 18, def. 3.19}) we have that with $\mathcal{S}_{vac(m)}$ a [[perturbative S-matrix]] scheme perturbing around $vac(m)$ also \begin{displaymath} \sigma_\rho \circ \left(\mathcal{S}_{vac(m/\rho)}\right) \circ \sigma_\rho^{-1} \end{displaymath} is a perturbative S-matrix around $L_{kin}(m)$. \end{enumerate} In this case the [[main theorem of perturbative renormalization]] (prop. \ref{AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition}) says that there exists for each scale $\rho$ a unique [[interaction vertex redefinition]] $\mathcal{Z}^m_\rho$ (def. \ref{InteractionVertexRedefinition}) such that \begin{displaymath} \begin{aligned} & \sigma_\rho \circ \mathcal{S}_{vac(m/\rho)} \circ \sigma_\rho^{-1}( g S_{int} + j A ) \\ & = \mathcal{S}_{vac(m)}(\mathcal{Z}^m_\rho(g S_{int} + j A)) \end{aligned} \end{displaymath} for all [[interaction]] [[action functionals]] $g S_{int} + j A$. These $\mathcal{Z}^m_\rho$ are the \emph{[[Gell-Mann-Low renormalization cocycle]]} elements. The [[interaction vertex redefinitions]] $\mathcal{Z}^m_\rho$ as a function of the [[rescaling]] is known as the \emph{[[running coupling constants]]}. \end{defn} \begin{prop} \label{CocyclePropertyOfRunningCouplingConstants}\hypertarget{CocyclePropertyOfRunningCouplingConstants}{} \textbf{(cocycle property of [[running coupling constants]])} In the situation of def. \ref{GellMannLowTransformations}, the [[Gell-Mann-Low renormalization cocycles]] ([[running coupling constants]]) $\mathcal{Z}^m_\rho$ satisfy the relation \begin{displaymath} \mathcal{Z}^m_{\rho_1 \rho_2} \;=\; \mathcal{Z}^m_{\rho_1} \circ \left( \sigma_{\rho_1} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_2} \right) \end{displaymath} Hence only for vanishing [[mass]] do these ``renormalization cocycles'' themselves form an actual [[renormalization group]]. \end{prop} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09 (69)}, \hyperlink{Duetsch18}{Dütsch 18 (3.325)}) \begin{proof} From the definition we have \begin{displaymath} \begin{aligned} \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1 \rho_2} & = \sigma_{\rho_1} \circ \underset{ \mathcal{S}_{vac(m/\rho_1)} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} }{ \underbrace{ \sigma_{\rho_2} \circ \mathcal{S}_{vac(m/\rho_1\rho_2)} \circ \sigma_{\rho_2}^{-1} }} \circ \sigma_{\rho_1}^{-1} \\ & = \underset{ = \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1} \circ \sigma_{\rho_1} }{ \underbrace{ \sigma_{\rho_1} \circ \mathcal{S}_{vac(m/\rho_1)} \circ \overset{ = id }{ \overbrace{ \sigma_{\rho_1}^{-1} \circ \sigma_{\rho_1} } } }} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_1}^{-1} \\ & = \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1} \circ \sigma_{\rho_1} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_1}^{-1} \end{aligned} \end{displaymath} This demonstrates the equation between vertex redefinitions to be shown after [[composition]] with an S-matrix scheme. But by the uniqueness-clause in the [[main theorem of perturbative renormalization]] the composition operation $\mathcal{S}_{\rho_{vac}} \circ (-)$ as a function from [[vertex redefinitions]] to S-matrix schemes is [[injective function|injective]]. This implies the equation itself. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} (See also the references at \emph{[[main theorem of perturbative renormalization]]}.) The original article on the Stückelberg-Petermann renormalization group is \begin{itemize}% \item [[Ernst Stückelberg]], [[André Petermann]], \emph{La normalisation des constantes dans la theorie des quanta}, Helv. Phys. Acta 26 (1953), 499–520 \end{itemize} The relation of the Stückelberg-Petermann renormalization group to [[scale transformations]] and the [[Gell-Mann-Low renormalization cocycle]] is due to \begin{itemize}% \item [[Murray Gell-Mann]] and F. E. Low, \emph{Quantum Electrodynamics at Small Distances}, Phys. Rev. 95 (5) (1954), 1300–1312 (\href{http://www.fafnir.phyast.pitt.edu/py3765/GellManLow.pdf}{pdf}) \item [[Romeo Brunetti]], [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative Algebraic Quantum Field Theory and the Renormalization Groups}, Adv. Theor. Math. Physics 13 (2009), 1541-1599 (\href{https://arxiv.org/abs/0901.2038}{arXiv:0901.2038}) \end{itemize} Review includes \begin{itemize}% \item [[Michael Dütsch]], section 3.5.1 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} See also \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Action Ward Identity and the Stückelberg-Petermann renormalization group}, Prog. Math. 251:113-124,2007 \end{itemize} [[!redirects Stückelberg-Petermann renormalization groups]] [[!redirects Stueckelberg-Petermann renormalization group]] [[!redirects Stueckelberg-Petermann renormalization groups]] \end{document}