\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Steenrod algebra} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_ordinary_cohomology}{For ordinary cohomology}\dotfill \pageref*{for_ordinary_cohomology} \linebreak \noindent\hyperlink{for_generalized_cohomology}{For generalized cohomology}\dotfill \pageref*{for_generalized_cohomology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{presentation_by_generators_and_relations}{Presentation by generators and relations}\dotfill \pageref*{presentation_by_generators_and_relations} \linebreak \noindent\hyperlink{dual_steenrod_algebra}{Dual Steenrod algebra}\dotfill \pageref*{dual_steenrod_algebra} \linebreak \noindent\hyperlink{MilnorTheorem}{Milnor's theorem}\dotfill \pageref*{MilnorTheorem} \linebreak \noindent\hyperlink{HopfAlgebraStructure}{Hopf algebroid structure}\dotfill \pageref*{HopfAlgebraStructure} \linebreak \noindent\hyperlink{for_ordinary_cohomology_2}{For ordinary cohomology}\dotfill \pageref*{for_ordinary_cohomology_2} \linebreak \noindent\hyperlink{HopfAlgebroidstructureForGeneralized}{For generalized cohomology}\dotfill \pageref*{HopfAlgebroidstructureForGeneralized} \linebreak \noindent\hyperlink{relation_to_adams_spectral_sequence}{Relation to Adams spectral sequence}\dotfill \pageref*{relation_to_adams_spectral_sequence} \linebreak \noindent\hyperlink{for_ordinary_cohomology_3}{For ordinary cohomology}\dotfill \pageref*{for_ordinary_cohomology_3} \linebreak \noindent\hyperlink{for_generalized_cohomology_3}{For generalized cohomology}\dotfill \pageref*{for_generalized_cohomology_3} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesHopfAlgebroid}{$E_\bullet$-Hopf algebroid structure}\dotfill \pageref*{ReferencesHopfAlgebroid} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $p$ a [[prime number]], the \emph{Steenrod algebra} $\mathcal{A}$ is the [[associative algebra]] over the [[prime field]] $\mathbb{F}_p$ of [[cohomology operations]] on [[ordinary cohomology]] with [[coefficients]] in $\mathbb{F}_p$. For $p = 2$ this is the $\mathbb{F}_2$-algebra generated by the [[Steenrod square]] operations. (Often the case $p = 2$ is understood by default.) For any prime $p$, the mod-$p$ Steenrod algebra furthermore has the structure of a [[Hopf algebra]] over $\mathbb{F}_p$, non-commutative but co-commutative. Under forming [[linear duals]] this gives the \emph{dual Steenrod algebra}, traditionally denoted $\mathcal{A}_\ast$ instead of $\mathcal{A}^\ast$. This is a [[Hopf algebra]] over $\mathbb{F}_p$ that is commutative, but non-co-commutative. The dual $\mathbb{F}_p$ Steenrod algebra is a special case of a [[commutative Hopf algebroid]] structure canonically induced on the self [[generalized homology]] $E_\bullet(E)$ of any [[ring spectrum]] $E$ for which $E_\bullet \to E_\bullet(E)$ is a [[flat morphisms]]. Therefore in this general case one sometimes speaks of ``dual $E$-Steenrod algebras''. The [[Ext]]-groups between [[comodules]] for these [[commutative Hopf algebroids]] $E_\bullet(E)$ prominently appear on the second page of the $E$-[[Adams spectral sequence]], see there for more. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_ordinary_cohomology}{}\subsubsection*{{For ordinary cohomology}}\label{for_ordinary_cohomology} (\ldots{}) (e.g. \hyperlink{MosherTangora68}{Mosher-Tangora 68, section 6}, \hyperlink{Lurie07}{Lurie 07}) (\ldots{}) \hypertarget{for_generalized_cohomology}{}\subsubsection*{{For generalized cohomology}}\label{for_generalized_cohomology} The Steenrod algebra and its standard properties, such as the \hyperlink{OnAdemRelations}{Adem relations}, follow abstractly from the [[Cotor]] groups of [[comodules]] over any [[commutative Hopf algebroid]]. This is due to (\hyperlink{May70}{May 70, 11.8}). A review is in (\hyperlink{Ravenel}{Ravenel, appendix 1, theorem A1.5.2}). In particular for $E$ a suitable [[E-infinity ring]], its self-[[generalized homology]] $E_\bullet(E)$ form a (graded-)[[commutative Hopf algebroid]] over $E_\bullet$. See at \emph{\hyperlink{HopfAlgebroidstructureForGeneralized}{Hopf algebroid structure -- For generalized cohomology} below.} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{presentation_by_generators_and_relations}{}\subsubsection*{{Presentation by generators and relations}}\label{presentation_by_generators_and_relations} \begin{defn} \label{SerreCartanBasis}\hypertarget{SerreCartanBasis}{} The \emph{Serre-Cartan basis} is the [[subset]] of elements of the Steenrod algebra on those of the form \begin{displaymath} Sq^{i_1} \circ Sq^{i_2} \circ \cdots \circ Sq^{i_n} \end{displaymath} where $i_k \in \mathbb{N}$ subject to the relation \begin{displaymath} i_k \geq 2 i_{k+1}. \end{displaymath} \end{defn} This is indeed a [[linear basis]] for the $\mathbb{F}_2$-[[vector space]] underlying the Steenrod algebra. \begin{prop} \label{AdemRelations}\hypertarget{AdemRelations}{} The [[Steenrod square]] operations satisfy the following relation, for all for all $0 \lt i \lt 2 j$: \begin{displaymath} Sq^i \circ Sq^j = \sum_{k = 0}^{[i/2]} \left( \itexarray{ j - k - 1 \\ i - 2k } \right)_{mod 2} Sq^{i + j -k} \circ Sq^k \end{displaymath} \end{prop} These are called the \textbf{\'A{}dem relations} (\hyperlink{Adem52}{\'A{}dem 52}). \begin{prop} \label{}\hypertarget{}{} The \'A{}dam relations precisely generate the [[ideal]] of relations among the Serre-Cartan basis elements, def. \ref{AdemRelations}, in the Steenrod algebra. \end{prop} More generally, for other [[prime numbers]]: \begin{defn} \label{SteenrodAlgebraForHFp}\hypertarget{SteenrodAlgebraForHFp}{} Let $p$ be a [[prime number]]. Write $\mathbb{F}_p$ for the corresponding [[prime field]]. The \textbf{mod $p$-Steenrod algebra} $\mathcal{A}_{\mathbb{F}_p}$ is the graded co-commutative [[Hopf algebra]] over $\mathbb{F}_p$ which is \begin{itemize}% \item for $p = 2$ generated by elements denoted $Sq^n$ for $n \in \mathbb{N}$, $n \geq 1$; \item for $p \gt 2$ generated by elements denoted $\beta$ and $P^n$ for $n \in \mathbb{N}$, $n \geq 1$ \end{itemize} (called the \textbf{Serre-Cartan basis elements}) whose product is subject to the following relations (called the \textbf{\'A{}dem relations}): \textbf{for $p = 2$}: for $0 \lt h \lt 2k$ the \begin{displaymath} Sq^h Sq^k \;=\; \underoverset{i = 0}{[h/2]}{\sum} \left( \itexarray{ k -i - 1 \\ h - 2i } \right) Sq^{h + k -i} Sq^i \,, \end{displaymath} \textbf{for $p \gt 2$}: for $0 \lt h \lt p k$ then \begin{displaymath} P^h P^k \;=\; \underoverset{i = 0}{[h/p]}{\sum} (-1)^{h+i} \left( \itexarray{ (p-1)(k-i) - 1 \\ h - p i } \right) P^{h +k - i}P^i \end{displaymath} and if $0 \lt h \lt p k$ then \begin{displaymath} \begin{aligned} P^h \beta P^k & =\; \underoverset{[h/p]}{i = 0}{\sum} (-1)^{h+i} \left( \itexarray{ (p-1)(k-i) \\ h - p i } \right) \beta P^{h+k-i}P^i \\ & + \underoverset{[(h-1)/p]}{i = 0}{\sum} (-1)^{h+i-1} \left( \itexarray{ (p-1)(k-i) - 1 \\ h - p i - 1 } \right) P^{h+k-i} \beta P^i \end{aligned} \end{displaymath} and whose coproduct $\Psi$ is subject to the following relations: \textbf{for $p = 2$}: \begin{displaymath} \Psi(Sq^n) \;=\; \underoverset{k = 0}{n}{\sum} Sq^k \otimes Sq^{n-k} \end{displaymath} \textbf{for $p \gt 2$}: \begin{displaymath} \Psi(P^n) \;=\; \underoverset{n}{k = 0}{\sum} P^k \otimes P^{n-k} \end{displaymath} and \begin{displaymath} \Psi(\beta) = \beta \otimes 1 + 1 \otimes \beta \,. \end{displaymath} \end{defn} e.g. (\hyperlink{Kochmann96}{Kochmann 96, p. 52}) \hypertarget{dual_steenrod_algebra}{}\subsubsection*{{Dual Steenrod algebra}}\label{dual_steenrod_algebra} \begin{defn} \label{DualSteenrodAlgebraForHPf}\hypertarget{DualSteenrodAlgebraForHPf}{} The $\mathbb{F}_p$-[[linear dual]] of the mod $p$-Steenrod algebra (def. \ref{SteenrodAlgebraForHFp}) is itself naturally a graded [[commutative Hopf algebroid|commutative Hopf algebra]] (with coproduct the linear dual of the original product, and vice versa), called the \textbf{dual Steenrod algebra} $\mathbb{A}_{\mathbb{F}_p}^\ast$. \end{defn} \begin{remark} \label{}\hypertarget{}{} There is an isomorphism \begin{displaymath} \mathcal{A}^\ast_{\mathbb{F}_p} \simeq H_\bullet( H \mathbb{F}_p, \mathbb{F}_p ) = \pi_\bullet( H \mathbb{F}_p \wedge H \mathbb{F}_p ) \,. \end{displaymath} \end{remark} (e.g. \hyperlink{Rognes12}{Rognes 12, remark 7.24}) \hypertarget{MilnorTheorem}{}\paragraph*{{Milnor's theorem}}\label{MilnorTheorem} We now give the generators-and-relations description of the dual Steenrod algebra $\mathcal{A}^\ast_{\mathbb{F}_p}$ from def. \ref{DualSteenrodAlgebraForHPf}, in terms of linear duals of the generators for $\mathcal{A}_{\mathbb{F}_p}$ itself, according to def. \ref{SteenrodAlgebraForHFp}. In the following, we use for $p = 2$ the notation \begin{displaymath} P^n \coloneqq Sq^{2n} \end{displaymath} \begin{displaymath} \beta \coloneqq Sq^1 \,. \end{displaymath} This serves to unify the expressions for $p = 2$ and for $p \gt 2$ in the following. Notice that for all $p$ \begin{itemize}% \item $P^n$ has even degree $deg(P^n) = 2n(p-1)$; \item $\beta$ has odd degree $deg(\beta) = 1$. \end{itemize} \begin{theorem} \label{MilnorTheoremOnDualSteenrodAlgebra}\hypertarget{MilnorTheoremOnDualSteenrodAlgebra}{} \textbf{([[Milnor's theorem]])} The dual mod $p$-Steenrod algebra $\mathcal{A}^\ast_{\mathbb{F}_p}$ (def. \ref{DualSteenrodAlgebraForHPf}) is, as an [[associative algebra]], the free [[graded commutative algebra]] \begin{displaymath} \mathcal{A}^\ast_{\mathbb{F}_p} \simeq Sym_{\mathbb{F}_p}(\xi_1, \xi_2, \cdots, \;\tau_0, \tau_1, \cdots) \end{displaymath} on generators: \begin{itemize}% \item $\xi_n$ being the linear dual to $P^{p^{n-1}} P^{p^{n-2}} \cdots P^p P^1$; \item $\tau_n$ being linear dual to $P^{p^{n-1}} P^{p^{n-2}} \cdots P^p P^1\beta$. \end{itemize} Moreover, the coproduct on $\mathcal{A}^\ast_{\mathbb{F}_p}$ is given by \begin{displaymath} \Psi(\xi_n) = \underoverset{k = 0}{n}{\sum} \xi_{n-k}^{p^k} \otimes \xi_k \end{displaymath} and \begin{displaymath} \Psi(\tau_n) = \tau_n \otimes 1 + \underoverset{k=0}{n}{\sum} \xi_{n-k}^{p^k} \xi_{n-k}^{p^k}\otimes \tau_k \,, \end{displaymath} where we set $\xi_0 \coloneqq 1$. \end{theorem} This is due to (\hyperlink{Milnor58}{Milnor 58}). See for instance (\hyperlink{Kochmann96}{Kochmann 96, theorem 2.5.1}) \hypertarget{HopfAlgebraStructure}{}\subsubsection*{{Hopf algebroid structure}}\label{HopfAlgebraStructure} \hypertarget{for_ordinary_cohomology_2}{}\paragraph*{{For ordinary cohomology}}\label{for_ordinary_cohomology_2} The Steenrod algebra for mod $p$ coefficients is a [[Hopf algebra]] over $\mathbb{F}_p$ which is graded commutative and non-co-commutative. This is due to (\hyperlink{Milnor58}{Milnor 58}). A review is in \hyperlink{Ravenel}{Ravenel, ch. 3, section 1}. \hypertarget{HopfAlgebroidstructureForGeneralized}{}\paragraph*{{For generalized cohomology}}\label{HopfAlgebroidstructureForGeneralized} More generally: \begin{lemma} \label{SelfHomologyIsModuleOverCohomologyRing}\hypertarget{SelfHomologyIsModuleOverCohomologyRing}{} Let $R$ be an [[E-∞ ring]] and let $A$ an [[E-∞ algebra]] over $R$. The self-[[generalized homology]] $A^R_\bullet(A)$ is naturally a [[module]] over the [[cohomology ring]] $A_\bullet$ via applying the [[homotopy groups]] $\infty$-functor $\pi_\bullet$ to the canonical inclusion \begin{displaymath} A \stackrel{\simeq}{\rightarrow} A \underset{R}{\wedge} R \stackrel{}{\rightarrow} A \underset{R}{\wedge} A \,. \end{displaymath} \end{lemma} \begin{prop} \label{}\hypertarget{}{} Let $R$ be an [[E-∞ ring]] and let $A$ an [[E-∞ algebra]] over $R$. If the the $A_\bullet$-[[module]] $A^R_\bullet(A)$ of lemma \ref{SelfHomologyIsModuleOverCohomologyRing} is a [[flat module]], then \begin{enumerate}% \item $(A_\bullet, A_\bullet(A))$ is a [[commutative Hopf algebroid]] over $R_\bullet$; \item $A^R_\bullet(X)$ is a left $A^R_\bullet(A)$-module for every $R$-[[∞-module]] $X$. \end{enumerate} \end{prop} This is due to (\hyperlink{BakerLazarev01}{Baker-Lazarev 01}), further discussed in (\hyperlink{BakerJeanneret02}{Baker-Jeanneret 02}) (there expressed in terms of the presentation by [[highly structured ring spectra]]). A review is also in (\hyperlink{Ravenel}{Ravenel, chapter 2, prop. 2.2.8}). \begin{proof} Using the arguments of (\hyperlink{Adams74}{Adams 74}, \hyperlink{Ravenel86}{Ravenel 86}). The [[flat module|flatness]] condition implies that there is an [[equivalence]] \begin{displaymath} \pi_\bullet\left( A \underset{R}{\wedge} A \underset{R}{\wedge} X \right) \stackrel{\simeq}{\longrightarrow} A_\bullet^R(A) \underset{A_\bullet}{\otimes} A_\bullet^R(X) \,. \end{displaymath} Combining this with the map in lemma \ref{SelfHomologyIsModuleOverCohomologyRing} yields the [[coaction]] \begin{displaymath} A_\bullet^R(X) \longrightarrow \pi_\bullet\left( A \underset{R}{\wedge} A \underset{R}{\wedge} X \right) \stackrel{\simeq}{\longrightarrow} A_\bullet^R(A) \underset{A_\bullet}{\otimes} A_\bullet^R(X) \,. \end{displaymath} \end{proof} These (dual) $E$-Steenrod algebra Hopf algebroids have also been called ``[[brave new algebra|brave new Hopf algebroids]]'' (\hyperlink{Baker}{Baker}, \hyperlink{BakerJeanneret02}{Baker-Jeanneret 02}) \begin{example} \label{}\hypertarget{}{} For $E = H \mathbb{F}_2$ the [[Eilenberg-MacLane spectrum]], this reproduces the [[Hopf algebra]] structure on the dual ordinary Steenrod algebra as above. \end{example} \begin{example} \label{}\hypertarget{}{} For $E =$ [[MU]] then by [[Quillen's theorem on MU]] $\pi_\bullet(MU) \simeq L$ is the [[Lazard ring]] and the Hopf algebroid $(\pi_\bullet(MU), MU_\bullet(MU))$ is described by the [[Landweber-Novikov theorem]]. \end{example} \begin{example} \label{}\hypertarget{}{} For $E =$ [[BP]] the analog is the content of the [[Adams-Quillen theorem]]. The [[Landweber exact functor theorem]] was proven using the $B P_\bullet(B P)$-Hopf algebroid. \end{example} \hypertarget{relation_to_adams_spectral_sequence}{}\subsubsection*{{Relation to Adams spectral sequence}}\label{relation_to_adams_spectral_sequence} \hypertarget{for_ordinary_cohomology_3}{}\paragraph*{{For ordinary cohomology}}\label{for_ordinary_cohomology_3} By construction, the total [[cohomology]] $H^\bullet(X,\mathbb{Z}_2)$ of a [[topological space]] $X$, naturally is a [[module]] over the Steenrod algebra: a cohomology element is represented by a [[cocycle]] which is a map $X \longrightarrow B^n \mathbb{Z}_2$ and the action of a [[Steenrod square]] on this is just by [[composition]]. In this form the Steenrod algebra appears in the second page of the [[Adams spectral sequence]] which computes $[\Sigma^\infty X, \Sigma^\infty Y]$ for [[topological spaces]] $X$ and $Y$: that second page is given by the [[Ext]]-groups \begin{displaymath} E_2 = Ext_A(H^\bullet(X, \mathbb{Z}_2), H^\bullet(Y,\mathbb{Z}_2)) \end{displaymath} computed in the [[category of modules|category of A-modules]] for $A$ the Steenrod algebra. \hypertarget{for_generalized_cohomology_3}{}\paragraph*{{For generalized cohomology}}\label{for_generalized_cohomology_3} More generally, For $R$ an [[E-infinity ring]] such that its dual $R$-[[Steenrod algebra]] in the form of the self-[[homology]] $R_\bullet(R)$ is a (graded-)[[commutative Hopf algebroid]] over $R_\bullet = \pi_\bullet(R)$ (see at \href{Steenrod+algebra#HopfAlgebraStructure}{Steenrod algebra -- Hopf algebroid structure}), then the $E^2$-term of the $E$-Adams spectral sequence is an [[Ext]] of $E_\bullet(E)$-[[comodules]] \begin{displaymath} E^2 \simeq Ext_{R_\bullet(R)}(R_\bullet, R_\bullet(X)) \,. \end{displaymath} See the \hyperlink{ReferencesHopfAlgebroid}{references below}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cohomology operation]] \item [[power operation]] \item [[Pi-algebra]] \item [[Lambda-algebra]] \item [[Adams resolution]], [[Adams spectral sequence]], [[Adams-Novikov spectral sequence]] \item [[Brown-Gitler spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles include \begin{itemize}% \item [[José Ádem]], \emph{The iteration of the Steenrod squares in algebraic topology} , Proceedings of the National Academy of Sciences of the United States of America 38: 720--726 (1952) \item [[John Milnor]], \emph{The Steenrod algebra and its dual}, Ann. of Math. 67 (1958), 150--171. \item [[Norman Steenrod]], [[David Epstein]], \emph{Cohomology operations}, Ann. of Math. Studies, no. 50, Princeton University Press, Princeton, N. J., 1962. \item [[John Frank Adams]], part III, section 12 of \emph{[[Stable homotopy and generalised homology]]}, University of Chicago Press (1974). \end{itemize} Comprehensive discussion of the ordinary Steenrod algebra, with proof is the Adem relations includes \begin{itemize}% \item [[Robert Mosher]], [[Martin Tangora]], \emph{Cohomology Operations and Application in Homotopy Theory}, Harper and Row (1968) (\href{www.maths.ed.ac.uk/~aar/papers/moshtang.pdf}{pdf}) \item [[Jacob Lurie]], 18.917 \emph{\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007}{Topics in Algebraic Topology: The Sullivan Conjecture, Fall 2007}}. (MIT OpenCourseWare: Massachusetts Institute of Technology), \emph{\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/}{Lecture notes}} Lecture 2 \emph{Steenrod operations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture2.pdf}{pdf}) Lecture 3 \emph{Basic properties of Steenrod operations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture3.pdf}{pdf}) Lecture 4 \emph{The Adem relations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture4.pdf}{pdf}) Lecture 5 \emph{The Adem relations (cont.)} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture5.pdf}{pdf}) \end{itemize} The general algebraic approach was laid out in \begin{itemize}% \item [[Peter May]], \emph{A general algebraic approach to Steenrod operations}, in \emph{The Steenrod Algebra and its Applications} (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153--231. (\href{http://www.math.uchicago.edu/~may/BOOKS/Algebraic.pdf}{pdf}) \item [[Robert Bruner]], [[Peter May]], J. E. McClure, M. Steinberger, \emph{$H_\infty$ ring spectra and their applications}, Lecture Notes in Math., Springer-Verlag, Berlin, \end{itemize} reviewed in (\hyperlink{Ravenel}{Ravenel 86, A1.5}). Further textbook accounts include \begin{itemize}% \item Harvey Margolis, \emph{Spectra and the Steenrod algebra}, 1983 North-Holland \item [[Stanley Kochmann]], section 2.5 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Stefan Schwede]], chapter II section 10 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} Lecture notes include \begin{itemize}% \item [[John Rognes]], section 3 of \emph{The Adams spectral sequence}, 2012 (\href{http://folk.uio.no/rognes/papers/notes.050612.pdf}{pdf}) \end{itemize} Reviews include \begin{itemize}% \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]} Academic Press 1986 \end{itemize} (appendix 1, section 5 reviews the abstract algebraic definition). \begin{itemize}% \item Cary Malkievich, \emph{The Steenrod Algebra} (\href{http://math.stanford.edu/~carym/steenrod.pdf}{pdf}) \end{itemize} On the dual Steenrod algebra: \begin{itemize}% \item J. Palmieri, \emph{Some quotient Hopf algebras of the dual Steenrod algebra} (\href{http://www.math.washington.edu/~palmieri/Papers/quotient.pdf}{pdf}) \end{itemize} For a commented list of furhter references see also \begin{itemize}% \item \emph{\href{http://www.math.uwo.ca/~sisaacso/steenrod-seminar/steenrod.xhtml}{Steenrod algebra learning seminar}} \end{itemize} See also \begin{itemize}% \item \href{http://math.berkeley.edu/~aaron/adem/}{online Adem relation calculator} \end{itemize} \hypertarget{ReferencesHopfAlgebroid}{}\subsubsection*{{$E_\bullet$-Hopf algebroid structure}}\label{ReferencesHopfAlgebroid} The [[commutative Hopf algebroid]] structure on the dual $E$-Steenrod algebra $E_\bullet(E)$ and its relation to the $E^2$-term in the [[Adams spectral sequence]] is discussed in \begin{itemize}% \item [[Andrew Baker]], \emph{Brave new Hopf algebroids}, \href{http://www.maths.gla.ac.uk/~ajb/dvi-ps/brave-ha.pdf}{pdf} \item [[Andrew Baker]], [[Andrey Lazarev]], \emph{On the Adams Spectral Sequence for R-modules}, Algebr. Geom. Topol. 1 (2001) 173-199 (\href{http://arxiv.org/abs/math/0105079}{arXiv:math/0105079}) \item [[Andrew Baker]] and Alain Jeanneret, \emph{Brave new Hopf algebroids and extensions of $MU$-algebras}, Homology Homotopy Appl. Volume 4, Number 1 (2002), 163-173. (\href{http://projecteuclid.org/euclid.hha/1139840059}{Euclid}) \item [[Mark Hovey]], \emph{Homotopy theory of comodules over a Hopf algebroid} (\href{http://arxiv.org/abs/math/0301229}{arXiv:math/0301229}) \end{itemize} [[!redirects Steenrod algebras]] [[!redirects Adem relation]] [[!redirects Ádem relation]] [[!redirects Adem relations]] [[!redirects Ádem relations]] [[!redirects dual Steenrod algebra]] [[!redirects dual Steenrod algebras]] \end{document}