\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Steenrod homology} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Steenrod Homology of a [[metric space|metric]] (or [[uniform space|uniform]], or [[Hausdorff space|Hausdorff]], or \ldots{}) space measures separations/holes by asking which \emph{discrete} or \emph{approximate} simplices can be filled-in to arbitrary fineness. \hypertarget{notation}{}\subsubsection*{{Notation}}\label{notation} The dimension-$p$ simplices of a simplicial complex $K$ will be noted $K_p$. And, today, I feel like writing $A \ll X$ to say that $A$ is a compact subspace of $X$. \hypertarget{the_definition}{}\subsection*{{The Definition}}\label{the_definition} Given a metric space $(X,d)$, define the category $Reg (X,d)$, ``of regular complexes'', with objects pairs $(K,f)$ where \begin{itemize}% \item $K$ is a locally-finite simplicial complex \item $f : K_0 \to X$ satisfies $limsup_{e:K_1} d( \partial_0 e, \partial_1 e) = 0$ \end{itemize} and with morphisms from $(K,f)$ to $(L,g)$ being the inclusions of subcomplexes $h : K \to L$ making $g$ an extension of $f$: \begin{displaymath} Reg_d((K,f),(L,g)) = \{ h : hom(K,L) | f = g \circ h \} \end{displaymath} Note that $Reg_d$ has finite pushouts. The condition that $K$ be locally-finite means that arbitrary formal sums $\sum g_x x$ of $p$-simplices $x\in K_p$ have a well-defined boundary in the usual way: \begin{displaymath} \partial \sum g_x x = \sum (-1)^j g_x \partial_j x \end{displaymath} mentions a given simplex only finitely-many times. Taking $g_x\in G$, for any abelian group $G$, this gives a functor $C_* : Reg(X,d) \to Ch$, valued in chain complexes. \textbf{Definition} : \emph{The Steenrod Homology $H_p(X,d)$ is the homology of the chain complex $\colim_{K,f} C_*$ in degree $p+1$.} In pieces, this means that a Steenrod $p$-cycle may be represented by a 3ple $(K,f,\varphi)$ of a locally-finite complex $K$, a $K_1$-regular map $K_0 \to X$, and a formal sum $\varphi$ of simplices of dimension $p+1$ of $K$ with $\partial \varphi = 0$. The group operations may as well be represented in terms of the chains $\varphi$ for a single $K$ and $f$. \hypertarget{historical_note}{}\subsubsection*{{Historical note}}\label{historical_note} what we have just called $H_p$, Steenrod himself notated $H^{p+1}$. It was early days yet. \hypertarget{pairing_with_alexanderspanier_cohomology}{}\subsection*{{Pairing with Alexander-Spanier Cohomology}}\label{pairing_with_alexanderspanier_cohomology} A compactly-supported Alexander-Spanier Cocycle is a (compactly-supported) cochain $\chi : X^{p+1} \to G$ whose derivation $d \chi$ vanishes on tuples that are \emph{small enough}. For such a cochain, the sums \begin{displaymath} \varphi \frown \chi = \sum_{x :K_{p+1}} n_x (d\chi)(x) = \sum_x n_x \chi(\partial x) \end{displaymath} are finite sums, and vanish for both coboundaries $\chi = d\omega$ and for boundaries $x = \partial y$ (because $d d = \partial \partial = 0$. Thus the pairings descend to \begin{displaymath} H_p( X,d ;\mathbb{Z}) \otimes H_c^p( X , G ) \to G \end{displaymath} and all the reasonable variations you might consider. \hypertarget{continuities}{}\subsection*{{Continuities}}\label{continuities} \hypertarget{colimits}{}\subsubsection*{{Colimits}}\label{colimits} Given a set $\{ X_i \}$ of metric spaces, their disjoint union can be given a metric in which separate summands are all distance $1$ from eachother. This metric has $Reg( * \sqcup \coprod X_i) = colim Reg(* \sqcup X_i)$ and therefore also \begin{displaymath} H_p(* \sqcup \coprod X_i) \simeq \bigoplus H_p( * \sqcup X_i ) \end{displaymath} While $limsup d(\partial_0 x,\partial_1 x) = 0$ is a \emph{topological} condition on \emph{compact} metric spaces, it definitely is not so on noncompact spaces. For this reason, one frequently considers the compactly-supported (compactly-generated?) homology as well, \begin{displaymath} {}_c H_p(X) = \colim_{A \ll X } H_p(A) . \end{displaymath} \hypertarget{limits}{}\subsubsection*{{Limits}}\label{limits} Let $\dots \to X_{i+1} \to X_i \to \dots$ be a tower of \emph{compact} metric spaces; in generous versions of Set-Theory, its limit is again a \emph{compact} metric space. In contrast to $colim$, one can reasonably say $Reg(lim_i X_i) = lim_i Reg(X_i)$; and moreover, since the morphisms of $Reg(X_i)$ are \emph{inclusions of subcomplexes}, it follows that \begin{displaymath} \colim_{Reg(lim X)} C_* \simeq lim_i \colim_{Reg(X_i)} C_* \end{displaymath} the usual Abstract Nonsense relating to the [[Milnor sequence]], then gives short exact sequences \begin{displaymath} 0 \to lim_i^1 H_{p+1}(X_i) \to H_p (lim X) \to lim_i H_p( X_i ) \to 0 \end{displaymath} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Steenrod-Sitnikov homology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item N. E. [[Steenrod]], Regular Cycles of Compact Metric Spaces, Annals of Mathematics, Second Series, Vol. 41, No. 4 (Oct., 1940), pp. 833-851 \href{https://www.jstor.org/stable/1968863}{JSTOR} \item [[John Milnor]], \emph{On axiomatic homology theory}, Pacific J. Math. Volume 12, Number 1 (1962), 337-341 (\href{http://projecteuclid.org/euclid.pjm/1103036730}{Euclid}) \end{itemize} \end{document}