\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Steenrod square} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DefinitionInTermsOfExtendedSquares}{Construction in terms of extended squares}\dotfill \pageref*{DefinitionInTermsOfExtendedSquares} \linebreak \noindent\hyperlink{axiomatic_characterization}{Axiomatic characterization}\dotfill \pageref*{axiomatic_characterization} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_bockstein_homomorphism}{Relation to Bockstein homomorphism}\dotfill \pageref*{relation_to_bockstein_homomorphism} \linebreak \noindent\hyperlink{compatibility_with_suspension}{Compatibility with suspension}\dotfill \pageref*{compatibility_with_suspension} \linebreak \noindent\hyperlink{relation_to_massey_products}{Relation to Massey products}\dotfill \pageref*{relation_to_massey_products} \linebreak \noindent\hyperlink{adem_relations}{Adem relations}\dotfill \pageref*{adem_relations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{HopfInvariant}{Hopf invariant}\dotfill \pageref*{HopfInvariant} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What are called the \emph{Steenrod squares} is the system of [[cohomology operations]] on [[cohomology]] with [[coefficients]] in $\mathbb{Z}_2$ (the [[cyclic group of order 2]]) which is compatible with [[suspension]] (the ``stable cohomology operations''). They are special examples of [[power operations]]. The Steenrod squares together form the \emph{[[Steenrod algebra]]}, see there for more. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{DefinitionInTermsOfExtendedSquares}{}\subsubsection*{{Construction in terms of extended squares}}\label{DefinitionInTermsOfExtendedSquares} We discuss the explicit construction of the Steenrod-operations in terms of [[chain maps]] of [[chain complexes]] of $\mathbb{F}_2$-[[vector spaces]] equipped with a suitable product. We follow (\hyperlink{Lurie07}{Lurie 07, lecture 2}). Write $\mathbb{F}_2 \coloneqq \mathbb{Z}/2\mathbb{Z}$ for the [[field]] with two elements. For $V$ an $\mathbb{F}_2$-[[module]], hence an $\mathbb{F}_2$-[[vector space]], and for $n \in \mathbb{N}$, write \begin{displaymath} V^{\otimes n}_{h \Sigma_n} \in \mathbb{F}_2 Mod \end{displaymath} for the [[homotopy quotient]] of the $n$-fold [[tensor product]] of $V$ with itself by the [[action]] of the [[symmetric group]]. Explicitly this is presented, up to [[quasi-isomorphism]] by the ordinary [[coinvariants]] $D_n(V)$ of the tensor product of $V^{\otimes n}$ with a [[free resolution]] $E \Sigma_n^\bullet$ of $\mathbb{F}_2$: \begin{displaymath} V^{\otimes n}_{h \Sigma_n} \simeq D_n(V) \coloneqq (V^{\otimes n} \otimes E\Sigma_n)_{\Sigma_n} \,. \end{displaymath} This is called the $n$th \emph{[[extended power]]} of $V$. For instance \begin{displaymath} D_2( \mathbb{F}_2[-n]) \simeq \mathbb{F}_2[-2n] \otimes C^\bullet(B \Sigma_2) \,, \end{displaymath} where on the right we have the, say, [[singular cohomology]] [[cochain complex]] of the [[homotopy quotient]] $\ast //\Sigma_2 \simeq B \Sigma_2 \simeq \mathbb{R}P^\infty$, which is the [[homotopy type]] of the [[classifying space]] for $\Sigma_2$. A [[chain map]] \begin{displaymath} D_2(V) \longrightarrow V \end{displaymath} is called a \emph{symmetric multiplication} on $V$ (a shadow of an [[E-infinity algebra]] structure). The archetypical class of examples of these are given by the [[singular cohomology]] $V = C^\bullet(X, \mathbb{F}_2)$ of any [[topological space]] $X$, for instance of $B \Sigma_2$. Therefore there is a canonical [[isomorphism]] \begin{displaymath} H^k(D_2(\mathbb{F}_2[-n])) \simeq H_{2n - k}(B \Sigma_2, \mathbb{F}_2) e_{2n} \end{displaymath} of the [[cochain cohomology]] of the extended square of the chain compplex concentrated on $\mathbb{F}_2$ in degree $n$ with the [[singular homology]] of this classifying space shifted by $2 n$. Using this one gets for general $V$ and for each $i \leq n$ a map that sends an element in the $n$th [[cochain cohomology]] \begin{displaymath} [v] \in H^n(V) \end{displaymath} represented by a morphism of [[chain complexes]] \begin{displaymath} v \;\colon\; \mathbb{F}_2[-n] \longrightarrow V \end{displaymath} to the element \begin{displaymath} \overline{Sq}^i(v) \in H^{n+1}(D_2(V)) \end{displaymath} represented by the [[chain map]] \begin{displaymath} \mathbb{F}_2[-n-i] \stackrel{1}{\longrightarrow} C^\bullet(B \Sigma_2, \mathbb{F}_2) \stackrel{\simeq}{\longrightarrow} D_2(\mathbb{F}_2[-n]) \stackrel{D_2(v)}{\longrightarrow} D_2(V) \,. \end{displaymath} If moreover $V$ is equipped with a \emph{symmetric product} $D_2(V) \longrightarrow V$ as above, then one can further compose and form the element \begin{displaymath} {Sq}^i(v) \in H^{n+1}(V) \end{displaymath} represented by the [[chain map]] \begin{displaymath} \mathbb{F}_2[-n-i] \stackrel{1}{\longrightarrow} C^\bullet(B \Sigma_2, \mathbb{F}_2) \stackrel{\simeq}{\longrightarrow} D_2(\mathbb{F}_2[-n]) \stackrel{D_2(v)}{\longrightarrow} D_2(V) \longrightarrow V \,. \end{displaymath} This [[linear map]] \begin{displaymath} Sq^i \;\colon\; H^\bullet(V) \longrightarrow H^{\bullet + i}(V) \end{displaymath} is called the $i$th \emph{Steenrod operation} or the $i$th \emph{Steenrod square} on $V$. By default this is understood for $V = C^\bullet(X,\mathbb{F}_2)$ the $\mathbb{F}_2$-[[singular homology|singular cochain complex]] of some [[topological space]] $X$, as in the above examples, in which case it has the form \begin{displaymath} Sq^i \;\colon\; H^\bullet(X, \mathbb{F}_2) \longrightarrow H^{\bullet+i}(X,\mathbb{F}_2) \,. \end{displaymath} \hypertarget{axiomatic_characterization}{}\subsubsection*{{Axiomatic characterization}}\label{axiomatic_characterization} For $n \in \mathbb{N}$ write $B^n \mathbb{Z}_2$ for the [[classifying space]] of [[ordinary cohomology]] in degree $n$ with [[coefficients]] in the [[group of order 2]] $\mathbb{Z}_2$ (the [[Eilenberg-MacLane space]] $K(\mathbb{Z}_2,n)$), regarded as an [[object]] in the [[homotopy category]] $H$ [[model structure on topological spaces|of topological spaces]]). Notice that for $X$ any topological space ([[CW-complex]]), \begin{displaymath} H^n(X, \mathbb{Z}_2) \coloneqq H(X, B^n \mathbb{Z}_2) \end{displaymath} is the [[ordinary cohomology]] of $X$ in degree $n$ with [[coefficients]] in $\mathbb{Z}_2$. Therefore, by the [[Yoneda lemma]], [[natural transformations]] \begin{displaymath} H^{k}(-, \mathbb{Z}_2) \to H^l(-, \mathbb{Z}_2) \end{displaymath} correspond bijectively to morphisms $B^k \mathbb{Z}_2 \to B^l \mathbb{Z}_2$. The following characterization is due to (\hyperlink{SteenrodEpstein}{SteenrodEpstein}). \begin{defn} \label{}\hypertarget{}{} The \textbf{Steenrod squares} are a collection of [[cohomology operations]] \begin{displaymath} Sq^n \;\colon\; H^k(-, \mathbb{Z}_2) \longrightarrow H^{k+n}(-, \mathbb{Z}_2) \,, \end{displaymath} hence of [[morphisms]] in the [[homotopy category]] \begin{displaymath} Sq^n \;\colon\; B^k \mathbb{Z}_2 \longrightarrow B^{k + n} \mathbb{Z}_2 \end{displaymath} for all $n,k \in \mathbb{N}$ satisfying the following conditions: \begin{enumerate}% \item for $n = 0$ it is the [[identity]]; \item if $n \gt deg(x)$ then $Sq^n(x) = 0$; \item for $k = n$ the morphism $Sq^n : B^n \mathbb{Z}_2 \to B^{2n} \mathbb{Z}_2$ is the [[cup product]] $x \mapsto x \cup x$; \item $Sq^n(x \cup y) = \sum_{i + j = n} (Sq^i x) \cup (Sq^j y)$; \end{enumerate} \end{defn} An analogous definition works for [[coefficients]] in $\mathbb{Z}_p$ for any [[prime number]] $p \gt 2$. The corresponding operations are then usually denoted \begin{displaymath} P^n \;\colon\; B^k \mathbb{Z}_p \longrightarrow B^{k+n} \mathbb{Z}_{p} \,. \end{displaymath} Under [[composition]], the Steenrod squares form an [[associative algebra]] over $\mathbb{F}_2$, called the \emph{[[Steenrod algebra]]}. See there for more. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_bockstein_homomorphism}{}\subsubsection*{{Relation to Bockstein homomorphism}}\label{relation_to_bockstein_homomorphism} $Sq^1$ is the [[Bockstein homomorphism]] of the [[short exact sequence]] $\mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2$. \hypertarget{compatibility_with_suspension}{}\subsubsection*{{Compatibility with suspension}}\label{compatibility_with_suspension} The Steenrod squares are compatible with the [[suspension isomorphism]]. Therefore the Steenrod squares are often also referred to as the \emph{[[stabilization|stable]] [[cohomology operations]]} \hypertarget{relation_to_massey_products}{}\subsubsection*{{Relation to Massey products}}\label{relation_to_massey_products} See at \emph{[[Massey product]]}, \emph{\href{Massey+product#RelationToSteenrodSquares}{Relation to Steenrod squares}} \hypertarget{adem_relations}{}\subsubsection*{{Adem relations}}\label{adem_relations} \begin{prop} \label{AdemRelations}\hypertarget{AdemRelations}{} \textbf{([[Adem relations]])} The [[composition]] of Steenrod square operations satisfies the following relations \begin{displaymath} Sq^i \circ Sq^j = \sum_{0 \leq k \leq i/2} \left( { { j - k - 1 } \atop { i - 2k } } \right)_{mod 2} Sq^{i + j -k} \circ Sq^k \end{displaymath} for all $0 \lt i \lt 2 j$. Here $\left( a \atop b \right) \coloneqq 0$ if $a \lt b$. \end{prop} \begin{example} \label{CompositionWithSq1}\hypertarget{CompositionWithSq1}{} \textbf{([[Adem relation]] for [[postcomposition]] with the [[Bockstein homomorphism]] $Sq^1 = \beta$)} For $j \geq 2$ and $i =1$, the [[Adem relations]] (prop. \ref{AdemRelations}) say that: \begin{displaymath} \begin{aligned} Sq^1 \circ Sq^j & = \underset{ (j-1)_{mod 2} }{ \underbrace{ \left( { {j - 1 } \atop 1 } \right)_{mod 2} }} Sq^{j + 1} \\ & = \left\{ \itexarray{ Sq^{j+1} &\vert& j \, \text{even} \\ 0 &\vert& j \, \text{odd} } \right. \end{aligned} \end{displaymath} \end{example} This gives rise to: \begin{example} \label{IntegralSteenrodSquares}\hypertarget{IntegralSteenrodSquares}{} \textbf{([[integral Steenrod squares]])} For [[odd natural numbers|odd]] $2n + 1 \in \mathbb{N}$ defines the [[integral Steenrod squares]] to be \begin{displaymath} Sq^{2n + 1}_{\mathbb{Z}} \;\coloneqq\; \beta \circ Sq^{2n} \,. \end{displaymath} By example \ref{CompositionWithSq1} and by \href{Bockstein+homomorphism#Mod2BocksteinIntoMod2Cohomology}{this example} these indeed are lifts of the odd [[Steenrod squares]]: \begin{displaymath} (mod\, 2) \circ Sq^{2n + 1}_{\mathbb{Z}} \;=\; Sq^{2n+1} \,, \end{displaymath} in that we have \begin{displaymath} \itexarray{ Sq^{2n+1}_{\mathbb{Z}} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{Sq^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{ \beta }{\longrightarrow}& B^{\bullet + 2n + 1} \mathbb{Z} \\ && \downarrow^{ id } && \downarrow^{ id } && \downarrow^{\mathrlap{B^{k + 2 n + 1}(mod\, 2)}} \\ Sq^{2n+1} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{Sq^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{ Sq^1 }{\longrightarrow}& B^{\bullet + 2n + 1} (\mathbb{Z}/2\mathbb{Z}) } \end{displaymath} \end{example} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{HopfInvariant}{}\subsubsection*{{Hopf invariant}}\label{HopfInvariant} \begin{prop} \label{}\hypertarget{}{} For $\phi \colon S^{k+n-1} \to S^k$, a map of [[spheres]], the Steenrod square \begin{displaymath} Sq^n \colon H^k(cofib(\phi), \mathbb{F}_2) \longrightarrow H^{k+n}(cofib(\phi),\mathbb{F}_2) \end{displaymath} (on the [[homotopy cofiber]] $cofib(\phi)\simeq S^k \underset{S^{k+n-1}}{\cup} D^{k+n}$) is non-vanishing exactly for $n \in \{1,2,4,8\}$. \end{prop} (\href{Hopf+invariant+one#Adams60}{Adams 60, theorem 1.1.1}). See at \emph{[[Hopf invariant one theorem]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Bockstein homomorphism]], \item [[Wu class]] \item [[Steenrod algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The operations were first defined in \begin{itemize}% \item [[Norman Steenrod]], \emph{Products of cocycles and extensions of mappings}, Annals of mathematics (1947) \end{itemize} The axiomatic definition appears in \begin{itemize}% \item [[Norman Steenrod]], [[David Epstein]], \emph{Cohomology operations}, Annals of mathematics studies, Princeton University Press (1962) \end{itemize} Lecture notes on Steenrod squares and the [[Steenrod algebra]] include \begin{itemize}% \item [[Jacob Lurie]], 18.917 \emph{\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007}{Topics in Algebraic Topology: The Sullivan Conjecture, Fall 2007}}. (MIT OpenCourseWare: Massachusetts Institute of Technology), \emph{\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/}{Lecture notes}} Lecture 2 \emph{Steenrod operations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture2.pdf}{pdf}) Lecture 3 \emph{Basic properties of Steenrod operations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture3.pdf}{pdf}) Lecture 4 \emph{The Adem relations} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture4.pdf}{pdf}) Lecture 5 \emph{The Adem relations (cont.)} (\href{http://ocw.mit.edu/courses/mathematics/18-917-topics-in-algebraic-topology-the-sullivan-conjecture-fall-2007/lecture-notes/lecture5.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Wen-Tsun Wu]], \emph{Sur les puissances de Steenrod}, Colloque de Topologie de Strasbourg, IX, La Biblioth\`e{}que Nationale et Universitaire de Strasbourg, (1952) \end{itemize} [[!redirects Steenrod squares]] [[!redirects Steenrod operation]] [[!redirects Steenrod operations]] [[!redirects stable cohomology operation]] [[!redirects stable cohomology operations]] \end{document}