\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Stokes theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{traditional_statement}{Traditional statement}\dotfill \pageref*{traditional_statement} \linebreak \noindent\hyperlink{FormulationInCohesiveHomotopyTypeTheory}{Abstract formulation in cohesive homotopy-type theory}\dotfill \pageref*{FormulationInCohesiveHomotopyTypeTheory} \linebreak \noindent\hyperlink{classical_forms}{Classical forms}\dotfill \pageref*{classical_forms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Stokes theorem} (also \emph{Stokes' theorem} or \emph{Stokes's theorem}) asserts that the [[integration of differential forms|integral]] of an [[exterior differential form]] on the boundary of an [[orientation|oriented]] [[manifold with boundary]] (or [[submanifold]] or [[chain]] of such) equals the integral of the [[de Rham differential]] of the form on the manifold itself. (The theorem also applies to exterior pseudoforms on a chain of pseudoriented submanifolds.) \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{traditional_statement}{}\subsubsection*{{Traditional statement}}\label{traditional_statement} Let \begin{displaymath} \Delta_{Diff} : \Delta \to Diff \end{displaymath} be the [[cosimplicial object]] of standard $k$-[[simplices]] in [[SmoothMfd]]: in degree $k$ this is the standard $k$-[[simplex]] $\Delta^k_{Diff} \subset \mathbb{R}^k$ regarded as a [[smooth manifold]] [[manifold with corners|with boundary and corners]]. This may be parameterized as \begin{displaymath} \Delta^k = \{ t^1, \cdots, t^k \in \mathbb{R}_{\geq 0} | \sum_i t^i \leq 1\} \subset \mathbb{R}^k \,. \end{displaymath} In this parameterization the coface maps of $\Delta_{Diff}$ are \begin{displaymath} \partial_i : (t^1, \cdots, t^{k-1}) \mapsto \left\{ \itexarray{ (t^1, \cdots, t^{i-1}, t^{i+1} , \cdots, t^{k-1}) & | i \gt 0 \\ (1- \sum_{i=1}^{k-1} t^i, t^1, \cdots, t^{k-1}) } \right. \,. \end{displaymath} For $X$ any [[smooth manifold]] a \textbf{smooth $k$-simplex in $X$} is a [[smooth function]] \begin{displaymath} \sigma : \Delta^k \to X \,. \end{displaymath} The \textbf{boundary} of this simplex in $X$ is the [[chain]] (formal linear combination of smooth $(k-1)$-simplices) \begin{displaymath} \partial \sigma = \sum_{i = 0}^k (-1)^i \sigma \circ \partial_i \,. \end{displaymath} Let $\omega \in \Omega^{k-1}(X)$ be a degree $(k-1)$-[[differential form]] on $X$. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Stokes theorem)} The [[integral]] of $\omega$ over the boundary of the simplex equals the integral of its [[de Rham differential]] over the simplex itself \begin{displaymath} \int_{\partial \sigma} \omega = \int_\sigma d \omega \,. \end{displaymath} \end{theorem} It follows that for $C$ any $k$-[[chain]] in $X$ and $\partial C$ its boundary $(k-1)$-chain, we have \begin{displaymath} \int_{\partial C} \omega = \int_{C} d \omega \,. \end{displaymath} More generally: \begin{prop} \label{StokesTheoremForFiberIntegration}\hypertarget{StokesTheoremForFiberIntegration}{} \textbf{(Stokes theorem for [[fiber integration]])} If $U$ is any [[smooth manifold]] and $\omega \in \Omega^\bullet(U \times \sigma)$ is a differential form on the [[Cartesian product]], then with respect to [[fiber integration|fiber-wise]] [[integration of differential forms]] \begin{displaymath} \int_\sigma \;\colon\; \Omega^{\bullet + dim(\sigma)}(U \times \sigma) \longrightarrow \Omega^\bullet(U) \end{displaymath} along $U \times \sigma \overset{pr_1}{\to} U$ we have \begin{displaymath} \int_\sigma d \omega \;=\; \int_{\partial_\sigma} \omega + (-1)^{dim(\sigma)} d \int_\sigma \omega \,. \end{displaymath} \end{prop} (e.g. \href{fiber+integration+in+ordinary+differential+cohomology#GomiTerashima00}{Gomi-Terashima 00, remark 3.1}) \hypertarget{FormulationInCohesiveHomotopyTypeTheory}{}\subsubsection*{{Abstract formulation in cohesive homotopy-type theory}}\label{FormulationInCohesiveHomotopyTypeTheory} We discuss here a general abstract formulation of differential forms, their integration and Stokes theorem in the axiomatics of [[cohesive homotopy type theory]] (following \hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13, theorem 3.2}). Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] and write $T \mathbf{H}$ for its [[tangent cohesive (∞,1)-topos]]. Assume that there is an [[interval object]] \begin{displaymath} \ast \cup \ast \stackrel{(i_0, i_1)}{\longrightarrow} \Delta^1 \end{displaymath} ``exhibiting the cohesion'' (see at \emph{[[continuum]]}) in that there is a (chosen) [[equivalence]] between the [[shape modality]] $\Pi$ and the [[localization of an (∞,1)-category|localization]] $L_{\Delta^1}$ at the the [[projection]] maps out of [[Cartesian products]] with this line $\Delta^1\times (-) \to (-)$ \begin{displaymath} \Pi \simeq L_{\Delta^1} \,. \end{displaymath} This is the case for instance for the ``standard [[continuum]]'', the [[real line]] in $\mathbf{H} =$ [[Smooth∞Grpd]]. It follows in particular that there is a chosen [[equivalence of (∞,1)-categories]] \begin{displaymath} \flat(\mathbf{H})\simeq L_{\Delta^1}\mathbf{H} \end{displaymath} between the [[flat modality|flat]] [[modal types|modal homotopy-types]] and the $\Delta^1$-homotopy invariant homotopy-types. Given a [[stable homotopy type]] $\hat E \in Stab(\mathbf{H})\hookrightarrow T \mathbf{H}$ [[cohesion]] provides two objects \begin{displaymath} \Pi_{dR} \Omega \hat E \,,\;\; \flat_{dR}\Sigma \hat E \;\; \in Stab(\mathbf{H}) \end{displaymath} which may be interpreted as [[de Rham complexes]] with [[coefficients]] in $\Pi(\flat_{dR} \Sigma \hat E)$, the first one restricted to negative degree, the second to non-negative degree. Moreover, there is a canonical map \begin{displaymath} \itexarray{ \Pi_{dR}\Omega \hat E && \stackrel{\mathbf{d}}{\longrightarrow} && \flat_{dR}\Sigma \hat E \\ & {}_{\mathllap{\iota}}\searrow && \nearrow_{\mathrlap{\theta_{\hat E}}} \\ && \hat E } \end{displaymath} which interprets as the [[de Rham differential]] $\mathbf{d}$. See at \emph{[[differential cohomology diagram]]} for details. Throughout in the following we leave the ``inclusion'' $\iota$ of ``differential forms regarded as $\hat E$-connections on trivial $E$-bundles'' implicit. \begin{defn} \label{CohesiveIntegrationOfDifferentialForms}\hypertarget{CohesiveIntegrationOfDifferentialForms}{} [[integration of differential forms|Integration of differential forms]] is the map \begin{displaymath} \int_{\Delta^1} \;\colon\; [\Delta^1, \flat_{dR}\Sigma \hat E] \longrightarrow \Pi_{dR}\Omega \hat E \end{displaymath} which is induced via the [[homotopy cofiber]] property of $\flat_{dR}\Omega \hat E$ from the [[counit of a comonad|counit]] naturality square of the [[flat modality]] on $[(\ast \coprod \ast \stackrel{(i_0, i_1)}{\to} \Delta ^1 ), -]$, using that this square exhibits a [[null homotopy]] due to the $\Delta^1$-homotopy invariance of $\flat \hat E$. \end{defn} \begin{prop} \label{}\hypertarget{}{} Stokes' theorem holds: \begin{displaymath} \int_{\Delta^1} \circ \mathbf{d} \;\simeq\; i_1^\ast - i_0^\ast \,. \end{displaymath} \end{prop} (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-V\"o{}lkl 13, theorem 3.2}) \hypertarget{classical_forms}{}\subsection*{{Classical forms}}\label{classical_forms} In early 20th-century [[vector analysis]] (and even today in undergraduate Calculus courses), the Stokes theorem took various classical forms about [[vector fields]] in the [[Cartesian space]] $\mathbb{R}^n$: \begin{itemize}% \item if $n = 1$ and $k = 1$, then this is the second [[FTC|Fundamental Theorem of Calculus]]: $\int_{[a,b]} f' = f(b) - f(a)$, where $a \leq b$ are [[real numbers]] and $f$ is a [[continuously differentiable function]] on a [[neighbourhood]] of the [[interval]] $[a,b]$; \item if $k = 1$ more generally, then this is a generalized form of the FTC: $\int_C grad f \cdot \mathbf{T} = f(Q) - f(P)$, where $C$ is a continuously differentiable oriented [[curve]] in $\mathbb{R}^n$, $P$ and $Q$ are the beginning and ending points (respectively) of $C$, $\mathbf{T}$ is the [[unit vector]] field on $C$ tangent to $C$ in the direction given by its orientation, and $f$ is a continuously differentiable function on a neighbourhood of $C$; \item if $n = 2$ and $k = 2$, then this is [[Green's Theorem]] (see there for other forms): $\int\int_R (\partial{v}/\partial{x} - \partial{u}/\partial{y}) = \int_C (u \,\mathrm{d}x + v \,\mathrm{d}y)$, where $C$ is a continuously differentiable [[simple closed curve]] in $\mathbb{R}^2$ (oriented using the standard orientation on $\mathbb{R}^2$), $R$ is the region that it encloses (guaranteed by the [[Jordan curve theorem|Jordan Curve Theorem]]), and $u$ and $v$ are continuously differentiable functions of the coordinates $x$ and $y$ on a neighbourhood of $R$; \item if $n = 3$ and $k = 2$, then this is the \textbf{Kelvin--Stokes Theorem} or \textbf{Curl Theorem}: $\int\int_R curl \mathbf{F} \cdot \mathbf{n} = \int_C \mathbf{F} \cdot \mathbf{T}$, where $R$ is a continuously differentiable [[pseudoorientation|pseudooriented]] [[surface]] in $\mathbb{R}^3$ with a continuously differentiable boundary $C$ (oriented to match the pseudoorientation of $R$ using the standard orientation on $\mathbb{R}^3$), $\mathbf{n}$ is the unit [[normal vector]] field on $R$ in the direction given by the pseudoorientation of $R$, $\mathbf{T}$ is the unit tangent vector field on $C$, and $\mathbf{F}$ is a continuously differentiable [[vector field]] on a neighbourhood of $D$; \item if $n = 3$ and $k = 3$, then this is the \textbf{Ostrogradsky--Gauss Theorem} or \textbf{Divergence Theorem}: $\int\int\int_D div \mathbf{F} = \int\int_R \mathbf{F} \cdot \mathbf{n}$, where $R$ is a continuously differentiable closed surface in $\mathbb{R}^3$, $D$ is the region that it encloses (guaranteed by the [[Jordan-Brouwer separation theorem|Jordan--Brouwer Separation Theorem]]), $\mathbf{n}$ is the outward-pointing unit normal vector field on $R$, and $\mathbf{F}$ is a continuously differentiable vector field on a neighbourhood of $D$; \item if $k = n$ more generally, then this is the generalized [[Divergence Theorem]]: $\int_D div \mathbf{F} = \int_R \mathbf{F} \cdot \mathbf{n}$, where $R$ is a continuously differentiable closed [[hypersurface]] in $\mathbb{R}^n$, $D$ is the region that it encloses, $\mathbf{n}$ is the outward-pointing unit normal vector field on $R$, and $\mathbf{F}$ is a continuously differentiable vector field on a neighbourhood of $D$. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Poincaré lemma]] \item \textbf{Stokes theorem} \begin{itemize}% \item [[nonabelian Stokes theorem]] \end{itemize} \item [[de Rham theorem]] \item [[Hodge theorem]] \item a special case is [[Cauchy's integral theorem]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} A standard account is for instance in \begin{itemize}% \item Reyer Sjamaar, \emph{Manifolds and differential forms}, \href{http://www.math.cornell.edu/~sjamaar/papers/manifold.pdf}{pdf} \end{itemize} Discussion of [[chains]] of smooth [[singular simplices]] \begin{itemize}% \item \emph{Stokes' theorem on chains} () \end{itemize} Discussion of Stokes theorem on [[manifolds with corners]] is in \begin{itemize}% \item [[Brian Conrad]], \emph{\href{http://math.stanford.edu/~conrad/diffgeomPage/handouts.html}{Differential geometry}} \emph{Math 396. Stokes' theorem with corners} (\href{http://math.stanford.edu/~conrad/diffgeomPage/handouts/stokescorners.pdf}{pdf}) \end{itemize} Discussion for manifolds with more general singularities on the boundary is in \begin{itemize}% \item Friedrich Sauvigny, \emph{Partial Differential Equations: Vol. 1 Foundations and Integral Representations} \end{itemize} Discussion in [[cohesive homotopy type theory]] is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} [[!redirects Stokes Theorem]] [[!redirects Stokes theorem]] [[!redirects Stokes theorems]] [[!redirects Stokes' theorem]] [[!redirects Stokes' Theorem]] [[!redirects Stokes’ theorem]] [[!redirects Stokes’ Theorem]] [[!redirects Stokes' theorem]] [[!redirects Stokes' Theorem]] [[!redirects Stokes's theorem]] [[!redirects Stokes's Theorem]] [[!redirects Stokes’s theorem]] [[!redirects Stokes’s Theorem]] [[!redirects Stokes's theorem]] [[!redirects Stokes's Theorem]] [[!redirects Kelvin-Stokes theorem]] [[!redirects Kelvin-Stokes Theorem]] [[!redirects Kelvin–Stokes theorem]] [[!redirects Kelvin–Stokes Theorem]] [[!redirects Kelvin--Stokes theorem]] [[!redirects Kelvin--Stokes Theorem]] \end{document}