\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Stone-Weierstrass theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{precise_statement}{Precise statement}\dotfill \pageref*{precise_statement} \linebreak \noindent\hyperlink{outline_of_proof}{Outline of proof}\dotfill \pageref*{outline_of_proof} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Stone--Weierstrass theorem} says given a [[compact Hausdorff space]] $X$, one can uniformly approximate [[continuous functions]] $f: X \to \mathbb{R}$ by elements of any subalgebra that has enough elements to distinguish points. It is a far-reaching generalization of a classical theorem of Weierstrass, that real-valued continuous functions on a closed [[interval]] are uniformly approximable by [[polynomial]] functions. \hypertarget{precise_statement}{}\subsection*{{Precise statement}}\label{precise_statement} Let $X$ be a compact Hausdorff topological space; for a [[constructive mathematics|constructive]] version take $X$ to be a compact regular locale (see [[compactum]]). Recall that the algebra $C(X)$ of real-valued continuous functions $f: X \to \mathbb{R}$ is a commutative (real) [[Banach algebra]] with unit, under pointwise-defined addition and multiplication, and where the norm is the sup-norm \begin{displaymath} \|f\| := sup_{x \in X} |f(x)| \end{displaymath} A \textbf{subalgebra} of $C(X)$ is a vector subspace $A \subseteq C(X)$ that is closed under the unit and algebra multiplication operations on $C(X)$. A \textbf{Banach subalgebra} is a subalgebra $A \subseteq C(X)$ which is closed as a subspace of the metric space $C(X)$ under the sup-norm metric. We say that $A \subseteq C(X)$ \textbf{separates points} if, given distinct points $x, y \in X$, there exists $f \in A$ such that $f(x) \neq f(y)$. \begin{uthm} A subalgebra inclusion $A \subseteq C(X)$ is dense if and only if it separates points. Equivalently, a Banach subalgebra inclusion $A \subseteq C(X)$ is the identity if and only if it separates points. \end{uthm} \hypertarget{outline_of_proof}{}\subsection*{{Outline of proof}}\label{outline_of_proof} \begin{itemize}% \item The first step is the classical Weierstrass approximation, that polynomial functions $p(x): [a, b] \to \mathbb{R}$ are dense in $C([a, b])$; without loss of generality, take $a = -\frac1{4}$ and $b = \frac1{4}$. We use the method of constructing polynomials which [[approximation of the identity|approximate the identity]] of the convolution product (the [[distribution|Dirac distribution]]). Explicitly, consider the normalizations $K_n = s_n/\|s_n\|_1$ where $s_n(x) = (1 - x^2)^n$ over $[-1, 1]$ and is compactly supported on $[-1, 1]$, so that $K_n$ approximates the Dirac distribution concentrated at 0. Given $f: [-\frac1{4}, \frac1{4}] \to \mathbb{R}$, extend to a function compactly supported on $[-\frac1{2}, \frac1{2}]$. The convolution product\begin{displaymath} (K_n * f)(x) = \int_{-1}^1 K_n(x-y) f(y) d y \end{displaymath} is polynomial (since by differentiating under the integral enough times, we eventually kill the convolving polynomial factor $K_n$), and one may verify that $(K_n * f)$ converges to $f$ in sup norm (i.e., uniformly) as $n \to \infty$, and in particular when restricted over the interval $[-\frac1{4}, \frac1{4}]$. \end{itemize} Now suppose given a Banach subalgebra $A \subseteq C(X)$. \begin{itemize}% \item Given $f \in A \subseteq C(X)$, the values of $f$ are contained in some interval $[a, b]$. If polynomials $p_n$ converge to the absolute value function $|\cdot |: [a, b] \to \mathbb{R}$ in sup norm, then $p_n(f) \in A$ converges to $|f| \in C(X)$ in sup norm. Since $A$ is closed in $C(X)$ with respect to the sup-norm, it follows that $|f| \in A$. \item Next, $A$ is partially ordered by $f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$, and we claim the poset $A$ is closed under binary meets and binary joins. For, \begin{displaymath} f \vee g = \frac1{2}(|f - g| + (f + g)) \end{displaymath} and $f \wedge g = -((-f) \vee (-g))$, and we showed in the last step that $A$ is closed under the operation $f \mapsto |f|$. \end{itemize} Finally, suppose the Banach subalgebra $A$ separates points. Given $g \in C(X)$ and $\varepsilon \gt 0$, the last step is to show there exists $f \in A$ such that $\|f - g\| \leq \varepsilon$. \begin{itemize}% \item \begin{ulemma} Given $x \in X$, there exists $f_x \in A$ such that $f_x(x) = g(x)$ and $g(y) \leq f_x(y) + \varepsilon$ for all $y \in X$. \end{ulemma} \begin{proof} For each $y \in X$, $y \neq x$ we can choose $s \in A$ such that $s(x) \neq s(y)$, since $A$ separates points. Thus, given any $x, y$, there exist $s \in A$ and scalars $a$ and $b$ such that \begin{displaymath} a + b \cdot s(x) = g(x), \qquad a + b \cdot s(y) = g(y) \end{displaymath} Denote $a \cdot 1 + b s$ by $f_{x, y}$ (to indicate dependence on $x$ and $y$). For each $y$, choose a neighborhood $V_y$ so that $g(z) \leq f_{x, y}(z) + \varepsilon$ for all $z \in V_y$. Finitely many such neighborhoods $V_{y_1}, \ldots, V_{y_n}$ cover $X$; let $f_x$ be the join of $f_{x, y_1}, \ldots, f_{x, y_n}$. Then $g(y) \leq f_x(y) + \varepsilon$ for all $y \in X$. \end{proof} \item Given a choice of $f_x$ for each $x \in X$, as in the preceding lemma, we may choose a neighborhood $V_x$ such that $f_x(z) - \varepsilon \leq g(z)$ for all $z \in V_x$. Finitely many such neighborhoods $V_{x_1}, \ldots, V_{x_n}$ cover $X$; let $f$ be the meet of $f_{x_1}, \ldots, f_{x_n}$. Then \begin{displaymath} f(y) - \varepsilon \leq g(y) \leq f(y) + \varepsilon \end{displaymath} for all $y \in X$, as was to be shown. \end{itemize} \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} There is a complex-valued version of Stone--Weierstrass. Let $C(X, \mathbb{C})$ denote the commutative $C^*$-[[C-star algebra|algebra]] of complex-valued functions $f: X \to \mathbb{C}$, where the star operation is pointwise-defined conjugation. A $C^*$-\textbf{subalgebra} is a subalgebra $A \subseteq C(X, \mathbb{C})$ which is closed under the star operation. \begin{uthm} A $C^*$-subalgebra $A \subseteq C(X, \mathbb{C})$ is dense if and only if it separates points. \end{uthm} There is also a [[locally compact space|locally compact]] version. Let $X$ be a locally compact Hausdorff space and let $C_0(X)$ be the space of (say real-valued) functions $f$ which ``vanish at infinity'': for every $\varepsilon \gt 0$ there exists a compact set $K \subseteq X$ such that $|f(x)| \lt \varepsilon$ for all $x$ outside $K$. ($C_0(X)$ is no longer a Banach space, but it is [[locally convex topological vector space|locally convex]] and complete in its [[uniform space|uniformity]], and a Fr\'e{}chet space if $X$ is second countable.) Under pointwise multiplication, $C_0(X)$ is a commutative algebra \emph{without} unit. As before, we have a notion of subalgebra $A \subseteq C_0(X)$. \begin{uthm} $A \subseteq C_0(X)$ is dense if and only if it separates points and for no $x \in X$ is it true that every $f \in A$ vanishes at $x$. \end{uthm} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Karl Weierstraß]] and [[Marshall Stone]]. See \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem}{Stone-Weierstrass theorem}} \end{itemize} Discussion in [[constructive mathematics]] is in \begin{itemize}% \item [[B. Banaschewski]], [[C. J. Mulvey]], \emph{A constructive proof of the Stone-Weierstrass theorem}, J. Pure Appl. Algebra \textbf{116} (1997), pp. 25--40, \end{itemize} [[!redirects Stone–Weierstrass theorem]] [[!redirects Stone--Weierstrass theorem]] \end{document}