\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{String Lie 2-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InComponents}{In components}\dotfill \pageref*{InComponents} \linebreak \noindent\hyperlink{skeletal_model}{Skeletal model}\dotfill \pageref*{skeletal_model} \linebreak \noindent\hyperlink{strict_lie_2algebra_model}{Strict Lie 2-algebra model}\dotfill \pageref*{strict_lie_2algebra_model} \linebreak \noindent\hyperlink{AsHomotopyFiber}{As a homotopy fiber}\dotfill \pageref*{AsHomotopyFiber} \linebreak \noindent\hyperlink{as_the_prequantum_line_2bundle_of_a_courant_algebroid}{As the prequantum line 2-bundle of a Courant algebroid}\dotfill \pageref*{as_the_prequantum_line_2bundle_of_a_courant_algebroid} \linebreak \noindent\hyperlink{as_a_heisenberg_lie_2algebra}{As a Heisenberg Lie 2-algebra}\dotfill \pageref*{as_a_heisenberg_lie_2algebra} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{string Lie 2-algebra} is the [[infinitesimal object|infinitesimal approximation]] to the [[Lie 2-group]] that is called the [[string 2-group]]. It is a shifted [[L-infinity-algebra|∞-Lie algebra]] central extension \begin{displaymath} 0 \to \mathbf{b} \mathfrak{u}(1) \to \mathfrak{string}(n) \to \mathfrak{so}(n) \to 0 \end{displaymath} of the [[Lie algebra]] $\mathfrak{so}(n)$ by the [[Lie 2-algebra]] $\mathbf{b} \mathfrak{u}(1)$ which is classified by the canonical (up to normalization) [[Lie algebra cohomology|Lie algebra 3-cocycle]] $\mu$ on $\mathfrak{so}(n)$, which may itself be understood as a morphism \begin{displaymath} \mu : \mathfrak{so}(n) \to b^2 \mathfrak{u}(1) \,. \end{displaymath} When $\mu$ is normalized such that it represents the image in [[deRham cohomology]] of the generator of the [[integral cohomology]] $H^3(X,Spin(n))$ of the [[Spin group]], then the [[Lie integration]] of the String Lie 2-algebra is the [[String Lie 2-group]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We spell out first an explicit algebraic realization of the string Lie 2-algebra and then give its abstract definition as a [[homotopy fiber]] or [[principal ∞-bundle]]. \hypertarget{InComponents}{}\subsubsection*{{In components}}\label{InComponents} As with any [[L-∞ algebra]], we may define the String Lie 2-algebra $\mathfrak{string}(n)$ equivalently in terms of its [[Chevalley-Eilenberg algebra]]. There are various equivalent models we discuss a small one with a trinary bracket, and an infinite dimensional model which is however strict in that it comes from a [[differential crossed module]]. \hypertarget{skeletal_model}{}\paragraph*{{Skeletal model}}\label{skeletal_model} Write $\mathfrak{g} := \mathfrak{so}(n)$ in the following. The [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g})$ of $\mathfrak{g}$ has a degree 3 element \begin{displaymath} \mu = \langle -, [-,-]\rangle \,, \end{displaymath} well defined up to normalization ($\langle - ,- \rangle$ is the canonical bilinear symmetric [[invariant polynomial]] on $\mathfrak{g}$ and $[-,-]$ the Lie bracket), which is closed in $CE(\mathfrak{g})$ \begin{displaymath} d_{\mathfrak{g}} \mu = 0 \,. \end{displaymath} Hence this is the canonical (up to normalization) 3-cocycle in the [[Lie algebra cohomology]] of $\mathfrak{g}$. The Chevalley--Eilenberg algebra of $\mathfrak{string}(n)$ is \begin{displaymath} CE(\mathfrak{string}(n)) = (\wedge^\bullet (\mathfrak{g}^* \oplus \langle b\rangle), d_{\mathfrak{string}}) \,, \end{displaymath} where \begin{itemize}% \item $b$ is a single new generator in degree 2; \item the differental $d_{\mathfrak{string}}$ coincides with $d_{\mathfrak{g}}$ on $\mathfrak{g}^*$: \begin{displaymath} d_{\mathfrak{string}} |_{\mathfrak{g}^*} = d_{\mathfrak{g}} \end{displaymath} \item on the new generator it is defined by \begin{displaymath} d_{\mathfrak{string}} : b \mapsto \mu \,. \end{displaymath} \end{itemize} That the differential defined this way is indeed of degree +1 and squares to 0 is precisely the fact that $\mu$ is a degree 3-cocycle of $\mathfrak{g}$. One can equivalently describe the $L_\infty$-algebra structure of $\mathfrak{string}(n)$ in terms of lots of brackets \begin{displaymath} [-,-,\dots,-]_k:\wedge^k \mathfrak{string}(n)\to \mathfrak{string}(n), \end{displaymath} of degree $2-k$. In addition to the Lie bracket of $\mathfrak{g}$, there is only a further nontrivial bracket: it is the 3-bracket \begin{displaymath} [-,-,-]_3:\wedge^3 \mathfrak{g}\to \langle b\rangle^* \end{displaymath} given by \begin{displaymath} [x,y,z]_3=\mu(x,y,z)\cdot \beta, \end{displaymath} where $\beta:\langle b\rangle\to\mathbb{R}$ is the dual of $b$. \hypertarget{strict_lie_2algebra_model}{}\paragraph*{{Strict Lie 2-algebra model}}\label{strict_lie_2algebra_model} \textbf{Proposition} The string Lie 2-algebra given above is equivalent to the infinite-dimensional Lie 2-algebra coming from the [[differential crossed module]] \begin{displaymath} \hat \Omega \mathfrak{g} \to P \mathfrak{g} \end{displaymath} of the [[universal central extension]] of the [[loop Lie algebra]] mapping into the path Lie algebra, which acts on the former in the evident way. This is proven in \hyperlink{BCSS}{BCSS}. \hypertarget{AsHomotopyFiber}{}\subsubsection*{{As a homotopy fiber}}\label{AsHomotopyFiber} Up to equivalence, the string Lie 2-algebra is the [[homotopy fiber]] of the cocycle $\mu : \mathfrak{so}(n) \to \mathbf{b}^2 \mathfrak{u}(1)$, hence is the canonical $\mathbf{b} \mathfrak{u}(1)$-[[principal ∞-bundle]] over $\mathfrak{so}(n)$. Here we take by definition the [[(∞,1)-category]] of [[∞-Lie algebroid]]s to be that [[presentable (∞,1)-category|presented]] by the opposite (after passing to [[Chevalley-Eilenberg algebras]]) of the [[model structure on dg-algebras]]. For a detailed discussion of the recognition of this [[homotopy fiber]] see section 3.1 and specifically example 3.5.4 of (\hyperlink{FiorenzaRogersSchreiber13}{Fiorenza-Rogers-Schreiber 13}). In terms of dg-algebras, the cocycle is dually a morphism \begin{displaymath} CE(\mathfrak{so}(n)) \leftarrow CE(\mathbf{b}^2 \mathfrak{u}(1)) : \mu \end{displaymath} and the [[homotopy fiber]] in question is dually modeled by the [[homotopy pushout]] \begin{displaymath} \itexarray{ && 0 \\ && \uparrow \\ CE(\mathfrak{so}(n)) &\stackrel{\mu}{\leftarrow}& CE(\mathbf{b}^2 \mathfrak{u}(1)) } \,. \end{displaymath} By the general rules for computing [[homotopy pushout]]s, this may be computed by an ordinary [[pushout]] if we choose a [[resolution]] of $CE(\mathbf{b}^2 \mathfrak{u}(1)) \to 0$ by a cofibration and ensure that all three objects in the pushout diagram are cofibrations. For the resolution we take the standard one by the CE-algebra of the $\mathbf{b}^2 \mathfrak{u}(1)$-[[universal principal ∞-bundle]] $\mathbf{e b} \mathfrak{u}(1)$, which is the dg-algebra \begin{displaymath} CE(\mathbf{e b} \mathfrak{u}(1)) = (\wedge^\bullet( \langle b\rangle \oplus \langle c\rangle ), d) \end{displaymath} where $b$ is a generator of degree 2, $c$ one of degree 3 and the differential is given by \begin{displaymath} d b = c \end{displaymath} and \begin{displaymath} d c = 0 \,. \end{displaymath} The morphism $CE(\mathbf{b}^2 \mathfrak{u}(1)) \to CE(e b \mathfrak{u}(1))$ is the one that identifies the two degree-3 generators. Now $CE(\mathbf{b}^2 \mathfrak{u}(1))$ and $CE(\mathbf{e b} \mathfrak{u}(1))$ are [[Sullivan algebra]]s, hence are cofibrant objects in the [[model structure on dg-algebra]]s. The dg-algebra $CE(\mathfrak{g})$ is not quite a Sullivan algebra, but almost: it is a [[semifree dga]] and only fails to have the filtering property on the differential. This is sufficient for computing the desired [[homotopy fiber]], as discussed at \href{infinity-Lie+algebra+cohomology#Extensions}{∞-Lie algebra cohomology -- Extensions}. One observes now that \begin{displaymath} \itexarray{ CE(\mathfrak{string}) &\leftarrow& CE(\mathbf{e b} \mathfrak{u}(1)) \\ \uparrow && \uparrow \\ CE(\mathfrak{so}(n)) &\leftarrow& CE(\mathbf{b}^2 \mathfrak{u}(1)) } \end{displaymath} is a [[pushout]] diagram. Dually, this exhibits $\mathfrak{string}$ as the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathfrak{string}(n) &\to& * \\ \downarrow && \downarrow \\ \mathfrak{so}(n) &\stackrel{\mu}{\to}& \mathbf{b}^2 \mathfrak{u}(1) } \,. \end{displaymath} And this may be taken to be the abstract definition of the string Lie 2-algebra. By the general logic of [[fiber sequence|fiber sequences]] this implies that also \begin{displaymath} \mathbf{b} \mathfrak{u}(1) \to \mathfrak{string} \to \mathfrak{so}(n) \end{displaymath} is a fiber sequence. By analogous reasoning as before, we see that this is modeled by the ordinary pushout \begin{displaymath} \itexarray{ CE(\mathbf{b} \mathfrak{u}(1)) &\leftarrow& * \\ \uparrow && \uparrow \\ CE(\mathfrak{string}) &\leftarrow& CE(\mathfrak{g}) } \,. \end{displaymath} This is indeed a homotopy pushout even without resolving the point, because $CE(\mathfrak{string}) \leftarrow CE(\mathfrak{g})$ is already a cofibration, being the pushout of a cofibration by the above. \hypertarget{as_the_prequantum_line_2bundle_of_a_courant_algebroid}{}\subsubsection*{{As the prequantum line 2-bundle of a Courant algebroid}}\label{as_the_prequantum_line_2bundle_of_a_courant_algebroid} The [[delooping]] of a [[semisimple Lie algebra]] $\mathfrak{g}$ to a 1-object [[L-infinity algebroid]] $b \mathfrak{g}$ carries the [[Killing form]] as a quadratic bilinear [[invariant polynomial]] and is as such a [[symplectic Lie n-algebroid]] over the point for $n = 2$, hence a [[Courant Lie 2-algebroid]] over the point. As described at [[symplectic infinity-groupoid]] one can consider the higher analog of [[geometric quantization]] of these objects. This is again the homotopy fiber as \href{AsHomotopyFiber}{above}. \hypertarget{as_a_heisenberg_lie_2algebra}{}\subsubsection*{{As a Heisenberg Lie 2-algebra}}\label{as_a_heisenberg_lie_2algebra} The String Lie 2-algebra identifies also with the [[Heisenberg Lie 2-algebra]] of the [[string]] [[sigma-model]] for the specialization to the [[WZW model]] (\hyperlink{BaezRogers10}{Baez-Rogers 10}). See at \emph{[[2-plectic geometry]]} for more. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} More generally, for $\mathfrak{g}$ an [[L-infinity-algebra|∞-Lie algebra]] and $\mu \in CE(\mathfrak{g})$ an $\infty$-Lie algebra cocycle (a closed element in the [[Chevalley-Eilenberg algebra]] of $\mathfrak{g}$) of degree $k$, there is a corresponding shifted central extension \begin{displaymath} 0 \to \mathbf{b}^{k-2} \mathfrak{u}(1) \to \mathfrak{g}_\mu \to \mathfrak{g} \to 0 \,. \end{displaymath} For instance the [[supergravity Lie 3-algebra]] is such an extension of the [[super Poincare Lie algebra]] by a [[super Lie algebra]] 4-cocycle. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[special orthogonal Lie algebra]] \item \textbf{string Lie 2-algebra} \item [[fivebrane Lie 6-algebra]] \item [[type II supergravity Lie 2-algebra]] \item [[supergravity Lie 3-algebra]], [[supergravity Lie 6-algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In one incarnation or other the String Lie 2-algebra has been considered in literature of [[dg-algebra]]s, but its [[Lie theory|Lie theoretic]] interpretation as a Lie 2-algebra has been made fully explicit only in \begin{itemize}% \item [[John Baez]], [[Alissa Crans]], Higher-dimensional Algebra V: Lie 2-algebras, \emph{Theory and Applications of Categories} \textbf{12} (2004), 492-528. (\href{http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html}{web}) (\href{http://arxiv.org/abs/math.QA/0307263}{arXiv:math.QA/0307263}) \end{itemize} In \begin{itemize}% \item [[Andre Henriques]], \emph{Integrating $L_\infty$-algebras} (\href{http://arxiv.org/abs/math/0603563}{arXiv:0603563}) \end{itemize} the string Lie 2-algebra is integrated to the [[string 2-group]] using the general abstract method described at [[Lie integration]]. In \begin{itemize}% \item [[John Baez]], [[Alissa Crans]], [[Urs Schreiber]] and [[Danny Stevenson]], From loop groups to 2-groups, \emph{Homotopy, Homology and Applications} \textbf{9} (2007), 101-135. (\href{http://arxiv.org/abs/math.QA/0504123}{arXiv:math.QA/0504123}) \end{itemize} the equivalent strict model given by a differential crossed module is found, which is then integrated termwise as ordinary Lie algebras to a [[crossed module]] of Frechet-Lie groups, hence to a Lie [[strict 2-group]] model of the String Lie 2-group. The string Lie 2-algebra as the [[Heisenberg Lie 2-algebra]] on the group $G$ is discussed in \begin{itemize}% \item [[John Baez]], [[Chris Rogers]], \emph{Categorified Symplectic Geometry and the String Lie 2-Algebra}, Homology Homotopy Appl. Volume 12, Number 1 (2010), 221-236. (\href{http://arxiv.org/abs/0901.4721}{arXiv:0901.4721},\href{https://projecteuclid.org/euclid.hha/1296223828}{euclid}). \end{itemize} The string Lie 2-algebra is also considered in a certain context in \begin{itemize}% \item Sati, Schreiber, Stasheff, \emph{$L_\infty$-algebra connections} \end{itemize} where also the relation to the [[supergravity Lie 3-algebra]] and other structures is discussed. The super-$L_\infty$-version of the string $L_\infty$-algebra was considered in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division Algebras and Supersymmetry II} (\href{http://arxiv.org/abs/1003.3436}{arXiv:1003.3436}). \end{itemize} See also [[division algebra and supersymmetry]]. Discussion of the string Lie 2-algebra as the homotopy fiber of the underlying 3-cocycle is around prop. 3.3.96 in \begin{itemize}% \item \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} and example 3.5.4 in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:L-∞ algebras of local observables from higher prequantum bundles]]} (\href{http://arxiv.org/abs/1304.6292}{arXiv:1304.6292}) \end{itemize} More on this in \begin{itemize}% \item [[Lennart Schmidt]], \emph{Twisted Weil Algebras for the String Lie 2-Algebra}, in [[Christian Saemann]], [[Urs Schreiber]], [[Martin Wolf]] (eds.) \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory}} \href{http://www.maths.dur.ac.uk/lms/}{Durham Symposium} 2018, Fortschritte der Physik 2019 (\href{https://arxiv.org/abs/1903.02873}{arXiv:1903.02873}) \end{itemize} [[!redirects string Lie 2-algebra]] \end{document}