\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sullivan model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_cofibrations}{As cofibrations}\dotfill \pageref*{as_cofibrations} \linebreak \noindent\hyperlink{rationalization}{Rationalization}\dotfill \pageref*{rationalization} \linebreak \noindent\hyperlink{relation_to_whitehead_products}{Relation to Whitehead products}\dotfill \pageref*{relation_to_whitehead_products} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{Sullivan model} of a [[rational space]] $X$ is a particularly well-behaved commutative [[dg-algebra]] [[quasi-isomorphism|quasi-isomorphic]] to the dg-algebra of Sullivan forms on $X$. These \emph{Sullivan algebras} are precisely the cofibrant objects in the standard [[model structure on dg-algebras]]. Sullivan models are a central tool in [[rational homotopy theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Sullivan models are particularly well-behaved [[differential graded-commutative algebras]] that are equivalent to the dg-algebras of [[piecewise polynomial differential forms on topological spaces]]. Conversely, every rational space can be obtained from a dg-algebra and the \emph{minimal} Sullivan algebras provide convenient representatives that correspond bijectively to rational homotopy types under this correspondence. Abstractly, (relative) Sullivan models are the (relative) [[cell complexes]] in the standard [[model structure on dg-algebras]]. We now describe this in detail. First some notation and preliminaries: \begin{defn} \label{FiniteType}\hypertarget{FiniteType}{} \textbf{(finite type)} \begin{itemize}% \item A [[graded vector space]] $V$ is \emph{of finite type} if in each degree it is finite dimensional. In this case we write $V^*$ for its degreewise dual. \item A [[Grassmann algebra]] is of finite type if it is the Grassmann algebra $\wedge^\bullet V^*$ on a graded vector space of finite type (the dualization here is just convention, that will help make some of the following constructions come out nicely). \item A [[CW-complex]] is of finite type if it is built out of finitely many cells in each degree. \end{itemize} \end{defn} For $V$ a $\mathbb{N}$-[[graded vector space]] write $\wedge^\bullet V$ for the [[Grassmann algebra]] over it. Equipped with the trivial differential $d = 0$ this is a [[semifree dgc-algebra]] $(\wedge^\bullet V, d=0)$. With $k$ our ground [[field]] we write $(k,0)$ for the corresponding [[dg-algebra]], the tensor unit for the standard [[monoidal category|monoidal structure]] on $dgAlg$. This is the [[Grassmann algebra]] on the 0-vector space $(k,0) = (\wedge^\bullet 0, 0)$. \begin{defn} \label{SullivanAlgebra}\hypertarget{SullivanAlgebra}{} \textbf{(Sullivan algebras)} A \textbf{relatived Sullivan algebra} is a [[homomorphism]] of [[differential graded-commutative algebras]] that is an inclusion of the form \begin{displaymath} (A,d) \hookrightarrow (A \otimes_k \wedge^\bullet V, d') \end{displaymath} for $(A,d)$ any [[dgc-algebra]] and for $V$ some [[graded vector space]], such that \begin{enumerate}% \item there is a [[well ordered set]] $J$ indexing a [[linear basis]] $\{v_\alpha \in V| \alpha \in J\}$ of $V$; \item writing $V_{\lt \beta} \coloneqq span(v_\alpha | \alpha \lt \beta)$ then for all basis elements $v_\beta$ we have that \end{enumerate} \begin{displaymath} d' v_\beta \in A \otimes \wedge^\bullet V_{\lt \beta} \,. \end{displaymath} This is called a \textbf{minimal} relative Sullivan algebra if in addition the condition \begin{displaymath} (\alpha \lt \beta) \Rightarrow (deg v_\alpha \leq deg v_\beta) \end{displaymath} holds. For a Sullivan algebra $(k,0) \to (\wedge^\bullet V, d)$ relative to the tensor unit we call the [[semifree dgc-algebra]] $(\wedge^\bullet V,d)$ simply a \textbf{Sullivan algebra}, and we call it a \textbf{minimal Sullivan algebra} if $(k,0) \to (\wedge^\bullet V, d)$ is a minimal relative Sullivan algebra. \end{defn} (e.g. \hyperlink{Hess06}{Hess 06, def. 1.10, remark 1.11}) See also the section \href{model+structure+on+dg-algebras#SullivanAlgebras}{Sullivan algebras} at [[model structure on dg-algebras]]. \begin{remark} \label{}\hypertarget{}{} The special condition on the ordering in the relative Sullivan algebra says that these morphisms are composites of [[pushouts]] of the [[cofibrantly generated model category|generating cofibrations]] for the [[model structure on dg-algebras]], which are the inclusions \begin{displaymath} S(n) \hookrightarrow D(n) \,, \end{displaymath} where \begin{displaymath} S(n) = (\wedge^\bullet \langle c \rangle, d = 0) \end{displaymath} is the dg-algebra on a single generator in degree $n$ with vanishing differential, and where \begin{displaymath} D(n) = (\wedge^\bullet (\langle b \rangle \oplus \langle c \rangle), d b = c, d c = 0) \end{displaymath} with $b$ an additional generator in degree $n-1$. Therefore for $A \in dgcAlg$, a pushout \begin{displaymath} \itexarray{ S(n) &\stackrel{\phi}{\to}& A \\ \downarrow && \downarrow \\ D(n) &\to& (A \otimes \wedge^ \bullet \langle b \rangle, d b = \phi) } \end{displaymath} is precisely a choice $\phi \in A$ of a $d_A$-closed element in degree $n$ and results in adjoining to $A$ the element $b$ whose differential is $d b = \phi$. This gives the condition in the above definition: the differential of any new element has to be a sum of wedge products of the old elements. Notice that it follows in particular that the cofibrations in $dgAlg_{proj}$ are precisely all the [[retracts]] of relative Sullivan algebra inclusions. \end{remark} \begin{remark} \label{}\hypertarget{}{} \textbf{($L_\infty$-algebras)} Because they are [[semifree dga]]s, Sullivan dg-algebras $(\wedge^\bullet V,d)$ are (at least for degreewise finite dimensional $V$) [[Chevalley-Eilenberg algebra]]s of [[L-∞-algebra]]s. The co-commutative differential co-algebra encoding the corresponding [[L-∞-algebra]] is the free cocommutative algebra $\vee^\bullet V^*$ on the degreewise dual of $V$ with differential $D = d^*$, i.e. the one given by the formula \begin{displaymath} \omega(D(v_1 \vee v_2 \vee \cdots v_n)) = - (d \omega) (v_1, v_2, \cdots, v_n) \end{displaymath} for all $\omega \in V$ and all $v_i \in V^*$. \end{remark} \begin{defn} \label{}\hypertarget{}{} \textbf{(Sullivan models)} For $X$ a [[simply connected]] [[topological space]] $X$, a \textbf{Sullivan (minimal) model} for $X$ is a Sullivan (minimal) algebra $(\wedge^\bullet V^\ast, d_V)$ equipped with a [[quasi-isomorphism]] \begin{displaymath} (\wedge^\bullet V^*, d_V) \stackrel{\simeq}{\longrightarrow} \Omega^\bullet_{pwpoly}(X) \end{displaymath} to the dg-algebra of [[piecewise polynomial differential forms]]. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_cofibrations}{}\subsubsection*{{As cofibrations}}\label{as_cofibrations} \begin{prop} \label{}\hypertarget{}{} \textbf{(cofibrations are relative Sullivan algebras)} The cofibrations in the [[projective model structure on differential graded-commutative algebras]] $(dgcAlg_{\mathbb{N}})_{proj}$ are precisely the [[retracts]] of relative Sullivan algebra inclusions (def. \ref{SullivanAlgebra}). Accordingly, the cofibrant objects in $(dgcAlg_{\mathbb{N}})_proj{}$ are precisely the [[retracts]] of Sullivan algebras. \end{prop} \begin{prop} \label{}\hypertarget{}{} Minimal Sullivan models are unique up to [[isomorphism]]. \end{prop} e.g \hyperlink{Hess06}{Hess 06, prop 1.18}. \hypertarget{rationalization}{}\subsubsection*{{Rationalization}}\label{rationalization} \begin{theorem} \label{SullivanRationalizationEquivalence}\hypertarget{SullivanRationalizationEquivalence}{} Consider the [[adjunction]] of [[derived functors]] \begin{displaymath} Ho(Top) \simeq Ho(sSet) \underoverset {\underset{\mathbb{R} \Omega^\bullet_{poly}}{\longrightarrow}} {\overset{\mathbb{L} K_{poly} }{\longleftarrow}} {\bot} Ho( (dgcAlg_{\mathbb{Q}, \geq 0})^{op} ) \end{displaymath} induced from the [[Quillen adjunction]] \begin{displaymath} (dgcAlg_{\mathbb{Q}, \geq 0}_{proj})^{op} \underoverset {\underset{K_{poly}}{\longrightarrow}} {\overset{\Omega^\bullet_{poly}}{\longleftarrow}} {\bot} sSet_{Quillen} \end{displaymath} (\href{rational+homotopy+theory#SullivanRationalizationAdjunction}{this theorem}). Then: On the [[full subcategory]] $Ho(Top_{\mathbb{Q}, \geq 1}^{fin})$ of [[simply connected topological space|simply connected]] [[rational topological spaces]] of [[finite type]] this adjunction restricts to an [[equivalence of categories]] \begin{displaymath} Ho(Top_{\mathbb{Q}, \gt 1}^{fin}) \underoverset {\underset{\mathbb{R} \Omega^\bullet_{poly}}{\longrightarrow}} {\overset{\mathbb{L} K_{poly} }{\longleftarrow}} {\simeq} Ho( (dgcAlg_{\mathbb{Q}, \gt 1}^{fin})^{op} ) \,. \end{displaymath} In particular the [[adjunction unit]] \begin{displaymath} X \longrightarrow K_{poly}(\Omega^\bullet_{pwpoly}(X)) \end{displaymath} exhibits the [[rationalization]] of $X$. \end{theorem} This is a central theorem of [[rational homotopy theory]], see for instance \hyperlink{Hess06}{Hess 06, corollary 1.26}. It follows that the [[cochain cohomology]] of the cochain complex of [[piecewise polynomial differential forms]] on any topological, hence equivalently that of any of its [[Sullivan models]], coincides with its [[ordinary cohomology]] with coefficients in the [[rational numbers]]: \begin{theorem} \label{}\hypertarget{}{} Let $(\wedge^\bullet V^*, d_V)$ be a minimal Sullivan model of a simply connected rational topological space $X$. Then there is an [[isomorphism]] \begin{displaymath} \pi_\bullet(X) \simeq V \end{displaymath} between the [[homotopy groups]] of $X$ and the generators of the minimal Sullivan model. \end{theorem} e.g. \hyperlink{Hess06}{Hess 06, theorem 1.24}. \hypertarget{relation_to_whitehead_products}{}\subsubsection*{{Relation to Whitehead products}}\label{relation_to_whitehead_products} See at \emph{[[the co-binary Sullivan differential is the dual Whitehead product]]}. $\backslash$linebreak \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} [[!include Sullivan models -- examples]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[formal dg-algebra]] \item [[minimal dg-module]] \item [[minimal fibration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Steve Halperin]], \emph{Lectures on minimal models}, Mem. Soc. Math. Franc. no 9/10 (1983) (\href{https://eudml.org/doc/94833}{web}) \item [[Kathryn Hess]], around def 1.10 of \emph{Rational homotopy theory: a brief introduction} (\href{http://arxiv.org/abs/math.AT/0604626}{arXiv:math.AT/0604626}) \end{itemize} [[!redirects Sullivan models]] [[!redirects Sullivan algebra]] [[!redirects Sullivan algebras]] [[!redirects Sullivan minimal algebra]] [[!redirects Sullivan minimal algebras]] [[!redirects relative Sullivan algebra]] [[!redirects relative Sullivan algebras]] [[!redirects minimal Sullivan algebra]] [[!redirects minimal Sullivan algebras]] [[!redirects minimal Sullivan model]] [[!redirects minimal Sullivan models]] [[!redirects Sullivan minimal model]] [[!redirects Sullivan minimal models]] \end{document}