\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sullivan model of a spherical fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RationalEulerAndPontryaginClasses}{Rational Euler- and Pontryagin-class}\dotfill \pageref*{RationalEulerAndPontryaginClasses} \linebreak \noindent\hyperlink{relation_to_rational_mapping_space_of_spheres}{Relation to rational mapping space of spheres}\dotfill \pageref*{relation_to_rational_mapping_space_of_spheres} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[minimal model]] for a [[spherical fibration]] in [[rational homotopy theory]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RationalEulerAndPontryaginClasses}{}\subsubsection*{{Rational Euler- and Pontryagin-class}}\label{RationalEulerAndPontryaginClasses} \begin{prop} \label{SullivanModelForSphericalFibration}\hypertarget{SullivanModelForSphericalFibration}{} Let $n \in \mathbb{N}$ be a [[natural number]], $n \geq 1$, let \begin{equation} \itexarray{ S^n &\longrightarrow& E \\ && \big\downarrow \\ && X } \label{SphericalFibration}\end{equation} be a [[spherical fibration]] of [[topological spaces]] such that $X$ admits a [[Sullivan model]] $A_X \in dgcAlg$. Then a [[Sullivan model]] $A_E$ for the total space $E$ is of the following form: \textbf{$n$ odd} If $n = 2k+1$ is an [[odd number]], then \begin{equation} A_E \;=\; A_X \otimes \mathbb{Q}\big[ \omega_{2k+1} \big] / \big( d \omega_{2k+1} = c_{2k+2} \big) \label{SullivanModelForOddDimensionalSphericalFibration}\end{equation} for some \begin{equation} c_{2k+2} \in A_X \label{RationalEulerClass}\end{equation} being the rational [[Euler class]] of the [[spherical fibration]]. In particular, if $E = S(V)$ is the [[unit sphere bundle]] of a [[real vector bundle]] $V \to X$, then \begin{displaymath} [c_{2k}] = \chi \end{displaymath} is the [[Euler class]] of that vector bundle and $\omega_{2k+1}$ is a [[cochain]] on the [[unit sphere bundle]] $S(E)$ which on the [[fundamental class]] of any [[n-sphere|(2k+1)-sphere]] [[fiber]] evaluates to minus unity: \begin{equation} \left\langle \omega_{2k+1}, \left[ S^{2k+1} \right] \right\rangle \;=\; -1 \,. \label{FiberIntegrationOfOddGenerator}\end{equation} $\backslash$linebreak \textbf{$n$ even} If $n = 2k$ is an [[even number]], then [[generalized the|the]] [[Sullivan model]] $A_E$ for a rank-$2k$ [[spherical fibration]] over some $X$ with [[Sullivan model]] $A_X$ is \begin{equation} A_E \;=\; A_X \otimes \mathbb{Q} \Big[ \omega_{2k} , \omega_{4k-1} \Big] / \left( \itexarray{ d \, \omega_{2k} &=& 0 \\ d \omega_{4k-1} & =& - \omega_{2k} \wedge \omega_{2k} + c_{4k} } \right) \label{FibS2kModel}\end{equation} where \begin{enumerate}% \item the new generator $\omega_{2k}$ evaluates to unity on the [[fundamental classes]] of the [[n-sphere|2k-sphere]] [[fibers]] $S^{2k} \simeq E_x \hookrightarrow E$ over each point $x \in X$: \begin{displaymath} \big\langle \omega_{2k}, [S^{2k}] \big\rangle \;=\; 1 \end{displaymath} \item $c_{4k} \in A_X$ is some element in the base algebra, which by \eqref{FibS2kModel} is closed and represents the rational [[cohomology class]] of the [[cup product|cup]] square of the class of $\omega_{2k}$: \begin{displaymath} \big[ c_{4k} \big] \;=\; \big[ \omega_{2k} \big]^2 \;\in\; H^{4k} \big( X, \mathbb{Q} \big) \end{displaymath} and this class classifies the spherical fibration, rationally. \end{enumerate} Moreover, if the [[spherical fibration]] $E \to X$ happens to be the [[unit sphere bundle]] $E = S(V)$ of a [[real vector bundle]] $V \to X$, then \begin{enumerate}% \item the class of $\omega_{2k}$ is $1/2$ the rationalized [[Euler class]] $\chi(\widehat V)$ of the corresponding (\ldots{}) rank [[reduction of the structure group|reduction]] $\widehat V$ of $V$: \begin{displaymath} \big[ \omega_{2k} \big] \;=\; \tfrac{1}{2}\chi\big( \widehat V \big) \;\in\; H^{2k}\big( X, \mathbb{Q} \big) \end{displaymath} \item the class of $c_{4k}$ is $1/4$th the rationalized $k$th [[Pontryagin class]] $p_k(V)$ of $V$: \begin{displaymath} \big[ c_{4k} \big] \;=\; \tfrac{1}{4} p_k(V) \;\in\; H^{4k}\big( X, \mathbb{Q}\big) \,. \end{displaymath} \end{enumerate} \end{prop} This may be found as \hyperlink{FelixHalperinThomas00}{Félix-Halperin-Thomas 00, 15, Example 4, p. 202}, see also \hyperlink{FelixOpreaTanre16}{Félix-Oprea-Tanré 16, Prop. 2.3}. The fiber integral \eqref{FiberIntegrationOfOddGenerator} follows by \href{Euler+class#TrivializationOfEulerFormOnUnitSphereBundle}{this Prop.}. \begin{remark} \label{NonMinimalityOfSullivanModels}\hypertarget{NonMinimalityOfSullivanModels}{} Beware that the Sullivan models for spherical fibrations in Prop. \ref{SullivanModelForSphericalFibration} are not in general \emph{minimal} Sullivan models. For example over the [[classifying space]] $B SO(8)$ of [[SO(8)]] with indecomposable [[Euler class]] generator $\chi_8$ the equation $d \omega_7 = \chi_8$ \eqref{SullivanModelForOddDimensionalSphericalFibration} for the univeral 7-sperical fibration $S^7 \sslash SO(8) \to B SO(8)$ violates the Sullivan minimality condition (which requires that the right hand side is at least a binary wedge product of generators, or equivalently that the degree of the new generator $\omega_7$ is greater than that of any previous generators). But the Sullivan models in Prop. \ref{SullivanModelForSphericalFibration} are \emph{relative} minimal models, relative to the Sullivan model for the base. This means in particular that the new generators of these models reflect non-[[torsion subgroup|torsion]] [[relative homotopy groups]], but not in general non-torsion absolute homotopy groups. \end{remark} \hypertarget{relation_to_rational_mapping_space_of_spheres}{}\subsubsection*{{Relation to rational mapping space of spheres}}\label{relation_to_rational_mapping_space_of_spheres} By general facts (see at [[∞-action]]) a spherical fibration as in \eqref{SphericalFibration} is classified by a map to the [[classifying space]] $B Aut(S^n)$ of the [[automorphism ∞-group]] $Aut(S^n) \hookrightarrow Maps(S^n, S^n)$ inside the [[mapping space]] from $S^n$ to itself, which is those [[connected components]] corresponding to [[degree of a continuous function|degree]] $\pm 1$ \begin{displaymath} Aut(S^n) \;=\; Maps_{\pm 1}\big( S^n, S^n\big) \,. \end{displaymath} Hence the spherical fibration is given by the [[homotopy pullback]] \begin{equation} \itexarray{ S^n &\longrightarrow& E &\longrightarrow& S^{n}\sslash Aut(S^n) \\ && \big\downarrow &{}_{(pb)}& \big\downarrow \\ && X &\underset{c}{\longrightarrow}& B Aut(S^n) } \label{SphericalFibration}\end{equation} of the universal spherical fibration along a classifying map $c$. The rational homotopy type of these [[connected components]] of the [[mapping space]] are given by [[Sullivan models of mapping spaces]]: \begin{prop} \label{RationalTypeOfMappingSpaceSnToSn}\hypertarget{RationalTypeOfMappingSpaceSnToSn}{} Let $n \in \mathbb{N}$ be a [[natural number]] and $fcolon S^n \to S^n$ a [[continuous function]] from the [[n-sphere]] to itself. Then the [[connected component]] $Maps_f\big( S^n, S^n\big)$ of the [[mapping space]] which contains this map has the following [[rational homotopy theory|rational]] [[homotopy type]]: \begin{equation} Maps_f\big( S^n, S^n\big) \;\simeq_{\mathbb{Q}}\; \left\{ \itexarray{ S^n \times S^{n-1} &\vert& n\,\text{even}\,, deg(f) = 0 \\ S^{2n-1} &\vert& n \, \text{even}\,, deg(f) \neq 0 \\ S^n &\vert& n\, \text{odd} } \right. \label{RationalHomotopyTypeOfMappingSpacesSnToSn}\end{equation} where $deg(f)$ is the [[degree of a continuous function|degree]] of $f$. \end{prop} (\hyperlink{MollerRaussen85}{Møller-Raussen 85, Example 2.5}, \hyperlink{CohenVoronov05}{Cohen-Voronov 05, Lemma 5.3.5}) \begin{remark} \label{}\hypertarget{}{} Here Prop. \ref{RationalTypeOfMappingSpaceSnToSn} and Prop. \ref{SullivanModelForSphericalFibration} are two aspects of the same situation: For $n = 2k+1$ an [[odd number]] the rational [[Euler class]] \eqref{RationalEulerClass} of the spherical fibration is the class of the rational classifying map to the shift of $S^{2k+1}$ in \eqref{RationalHomotopyTypeOfMappingSpacesSnToSn}; for $n = 2k$ an [[even number]] the rational [[Pontryagin class]] \eqref{RationalPontryaginClass} of the spherical fibration is the class of the rational classifying map to the shift of $S^{4k-1}$ in \eqref{RationalHomotopyTypeOfMappingSpacesSnToSn}. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include Sullivan models -- examples]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Yves Félix]], [[Steve Halperin]], J.C. Thomas, \emph{Rational Homotopy Theory}, Graduate Texts in Mathematics, 205, Springer-Verlag, 2000. \item [[Jesper Møller]], [[Martin Raussen]], \emph{Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces}, Transactions of the American Mathematical Society Vol. 292, No. 2 (Dec., 1985), pp. 721-732 (\href{https://www.jstor.org/stable/2000242}{jstor:2000242}) \item [[Ralph Cohen]], [[Alexander Voronov]], \emph{Notes on string topology} (\href{https://arxiv.org/abs/math/0503625}{arXiv:math/0503625}) \item [[Yves Félix]], John Oprea, [[Daniel Tanré]], Prop. 2.3 in \emph{Lie-model for Thom spaces of tangent bundles}, Proc. Amer. Math. Soc. 144 (2016), 1829-1840 (\href{http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12829-8/S0002-9939-2015-12829-8.pdf}{pdf}, \href{https://doi.org/10.1090/proc/12829}{doi:10.1090/proc/12829}) \end{itemize} [[!redirects Sullivan mode of spherical fibrations]] [[!redirects Sullivan models of spherical fibrations]] \end{document}