\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sullivan model of loop space} [[!redirects Sullivan model of free loop space]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{ConstructionForFreeLoopSpace}{For the free loop space}\dotfill \pageref*{ConstructionForFreeLoopSpace} \linebreak \noindent\hyperlink{ConstructionForBasedLoopSpace}{For the based loop space}\dotfill \pageref*{ConstructionForBasedLoopSpace} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_quotient_by__and_cyclic_homology}{Homotopy quotient by $S^1$ and cyclic homology}\dotfill \pageref*{homotopy_quotient_by__and_cyclic_homology} \linebreak \noindent\hyperlink{RelationToHochschildHomology}{Relation to Hochschild homology and cyclic homology}\dotfill \pageref*{RelationToHochschildHomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{4SphereAndTwistedDeRham}{Free loop space of the 4-sphere and twisted de Rham cohomology}\dotfill \pageref*{4SphereAndTwistedDeRham} \linebreak \noindent\hyperlink{free_loop_space_of_the_2sphere}{Free loop space of the 2-sphere}\dotfill \pageref*{free_loop_space_of_the_2sphere} \linebreak \noindent\hyperlink{IteratedLoopSpacesOfNSpheres}{Iterated based loop spaces of $n$-spheres}\dotfill \pageref*{IteratedLoopSpacesOfNSpheres} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[rational homotopy theory]], given a [[rational topological space]] modeled by a [[Sullivan model]] [[dg-algebra]], there is an explicit description of the Sullivan model of its [[loop space]], ([[free loop space]] or [[based loop space]]). This is a special case of [[Sullivan models of mapping spaces]]. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} \hypertarget{ConstructionForFreeLoopSpace}{}\subsubsection*{{For the free loop space}}\label{ConstructionForFreeLoopSpace} \begin{prop} \label{SullivanModelForTheFreeLoopSpace}\hypertarget{SullivanModelForTheFreeLoopSpace}{} \textbf{([[Sullivan model]] for [[free loop space]])} Let $(\wedge^\bullet V, d_X)$ be a [[semifree dg-algebra]] being a [[minimal Sullivan model]] of a [[rational space|rational]] [[simply connected space]] $X$. Then a Sullivan model for the [[free loop space]] $\mathcal{L} X$ is given by \begin{displaymath} (\wedge^\bullet( V \oplus s V ), d_{\mathcal{L}X}) \,, \end{displaymath} where \begin{itemize}% \item $s V$ is the [[graded vector space]] obtained from $V$ by shifting degrees down by one: $deg(s v) = deg(v)-1$; \item $d_{\mathcal{L}X}$ is defined on elements $v$ of $V$ by \begin{displaymath} d_{\mathcal{L}X} v \coloneqq d v \end{displaymath} and on elements $s v$ of $s V$ by \begin{displaymath} d_{\mathcal{L}X} s v \coloneqq - s ( d v ) \,, \end{displaymath} where on the right $s \colon V \to s V$ is extended as a graded [[derivation]] $s \colon \wedge^2 V \to \wedge^\bullet (V \oplus s V)$. \end{itemize} \end{prop} This is due to (\hyperlink{VigueSullivan76}{Vigu\'e{}-Sullivan 76}). Review includes (\hyperlink{FelixHalperinThomas00}{Felix-Halperin-Thomas 00, p. 206}, \hyperlink{Hess06}{Hess 06, example 2.5}, \hyperlink{FelixOpreaTanre08}{F\'e{}lix-Oprea-Tanre 08, theorem 5.11}). \begin{remark} \label{}\hypertarget{}{} The formula in prop. \ref{SullivanModelForTheFreeLoopSpace} is the same as that for the [[Weil algebra]] of the [[L-infinity algebra]] of wich $(\wedge^\bullet V,d_X)$ is the [[Chevalley-Eilenberg algebra]], except that here $s$ shifts \emph{down} whereas for the Weil algebra it shifts \emph{up}. \end{remark} \hypertarget{ConstructionForBasedLoopSpace}{}\subsubsection*{{For the based loop space}}\label{ConstructionForBasedLoopSpace} For $X$ a [[pointed topological space]] and for the [[circle]] $S^1$ regarded as [[pointed topological space|pointed]] by any base point $\ast \to S^1$ there is the following [[homotopy fiber sequence]] which exhibits the [[based loop space]] as the [[homotopy fiber]] of the [[evaluation map]] out of the [[free loop space]]: \begin{displaymath} \Omega X \overset{fib(ev_\ast)}{\longrightarrow} \mathcal{L}X \overset{ ev_\ast }{\longrightarrow} X \,. \end{displaymath} With the dgc-algebra model from Prop. \ref{SullivanModelForTheFreeLoopSpace} for $\mathcal{L}X$ it follows that the dgc-algebra model for the based loop space is the [[homotopy cofiber]] [[dgc-algebra]] $(\wedge^\bullet( s V ), d_{\Omega X})$ in \begin{displaymath} (\wedge^\bullet( s V ), d_{\Omega X}) \overset{ cofib\big( (ev_\ast)^\ast \big) }{\longleftarrow} (\wedge^\bullet( V \oplus s V ), d_{\mathcal{L}X}) \overset{ (ev_\ast)^\ast }{\longleftarrow} (\wedge\bullet V, d_X) \,. \end{displaymath} This the inclusion on the right is manifestly a [[relative Sullivan algebra]], its [[homotopy cofiber]] is represented by the ordinary cofiber, which is readily read off: \begin{prop} \label{SullivanModelForBasedLoopSpace}\hypertarget{SullivanModelForBasedLoopSpace}{} \textbf{([[Sullivan model]] for [[based loop space]])} For $X$ a [[connected topological space|cnnected]] and [[simply connected topological space]] with [[Sullivan model]] $(\wedge\bullet V, d_X)$, the Sullivan model $(\wedge^\bullet( s V ), d_{\Omega X})$ of its [[based loop space]] $\Omega X$ is the dgc-algebra obtained from $(\wedge\bullet V, d_X)$ by shifting down all generators in degree by 1, and by keeping only the co-unary componend of the [[differential]]. \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{homotopy_quotient_by__and_cyclic_homology}{}\subsubsection*{{Homotopy quotient by $S^1$ and cyclic homology}}\label{homotopy_quotient_by__and_cyclic_homology} \begin{prop} \label{ModelForS1quotient}\hypertarget{ModelForS1quotient}{} Given a [[Sullivan model]] $(\wedge^\bullet (V \oplus s V), d_{\mathcal{L}X})$ for a [[free loop space]] as in prop. \ref{SullivanModelForTheFreeLoopSpace}, then a Sullivan model for the [[cyclic loop space]], i.e. for the [[homotopy quotient]] $\mathcal{L} X // S^1$ with respect to the canonical [[circle group]] action that rotates loops (i.e. for the [[Borel construction]] $\mathcal{L}X \times_{S^1} E S^1$) is given by \begin{displaymath} (\wedge^\bullet( V\oplus s V \oplus \langle \omega_2\rangle ), d_{\mathcal{L}X/S^1}) \end{displaymath} where \begin{itemize}% \item $\omega_2$ is in degree 2; \item $d_{\mathcal{L}X/S^1}$ is defined on generators $w \in V\oplus s V$ by \begin{displaymath} d_{\mathcal{L}X/S^1} w \;\coloneqq\; d_{\mathcal{L}X} w + \omega_2 \wedge s w \,. \end{displaymath} \end{itemize} Moreover, the canonical sequence of morphisms of [[dg-algebras]] \begin{displaymath} (\wedge \omega_2, d = 0) \longrightarrow (\wedge^\bullet( V\oplus s V \oplus \langle \omega_2\rangle ), d_{\mathcal{L}X/S^1}) \longrightarrow (\wedge^\bullet( V\oplus s V ), d_{\mathcal{L}X}) \end{displaymath} is a model for the rationalization of the [[homotopy fiber sequence]] \begin{displaymath} \mathcal{L}X \longrightarrow \mathcal{L}X / / S^1 \longrightarrow B S^1 \end{displaymath} which exhibits the [[infinity-action]] (by the discussion there) of $S^1$ on $\mathcal{L}X$. \end{prop} This is due to (\hyperlink{VigueBurghelea85}{Vigu\'e{}-Burghelea 85, theorem A}). \hypertarget{RelationToHochschildHomology}{}\subsubsection*{{Relation to Hochschild homology and cyclic homology}}\label{RelationToHochschildHomology} Let $X$ be a [[simply connected topological space|simply connected]] [[topological space]]. The [[ordinary cohomology]] $H^\bullet$ of its [[free loop space]] is the [[Hochschild homology]] $HH_\bullet$ of its [[singular cohomology|singular chains]] $C^\bullet(X)$: \begin{displaymath} H^\bullet(\mathcal{L}X) \simeq HH_\bullet( C^\bullet(X) ) \,. \end{displaymath} Moreover the $S^1$-equivariant cohomology of the loop space, hence the ordinary cohomology of the cyclic loop space $\mathcal{L}X/^h S^1$ is the [[cyclic homology]] $HC_\bullet$ of the singular chains: \begin{displaymath} H^\bullet(\mathcal{L}X/^h S^1) \simeq HC_\bullet( C^\bullet(X) ) \end{displaymath} (\hyperlink{Loday11}{Loday 11}) If the [[coefficients]] are [[rational numbers|rational]], and $X$ is of [[finite type]] then by prop. \ref{SullivanModelForTheFreeLoopSpace} and prop. \ref{ModelForS1quotient}, and the general statements at \emph{[[rational homotopy theory]]}, the [[cochain cohomology]] of the above [[minimal Sullivan models]] for $\mathcal{L}X$ and $\mathcal{l}X/S^1$ compute the rational [[Hochschild homology]] and [[cyclic homology]] of (the cochains on) $X$, respectively. In the special case that the [[topological space]] $X$ carries the structure of a [[smooth manifold]], then the singular cochains on $X$ are equivalent to the [[dgc-algebra]] of [[differential forms]] (the [[de Rham algebra]]) and hence in this case the statement becomes that \begin{displaymath} H^\bullet(\mathcal{L}X) \simeq HH_\bullet( \Omega^\bullet(X) ) \,. \end{displaymath} \begin{displaymath} H^\bullet(\mathcal{L}X/^h S^1) \simeq HC_\bullet( \Omega^\bullet(X) ) \,. \end{displaymath} This is known as \emph{[[Jones' theorem]]} (\hyperlink{Jones87}{Jones 87}) An [[(infinity,1)-category theory|infinity-category theoretic]] proof of this fact is indicated at \emph{\href{Hochschild+cohomology#JonesTheorem}{Hochschild cohomology -- Jones' theorem}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{4SphereAndTwistedDeRham}{}\subsubsection*{{Free loop space of the 4-sphere and twisted de Rham cohomology}}\label{4SphereAndTwistedDeRham} We discuss the Sullivan model for the free and cyclic loop space of the [[4-sphere]]. This may also be thought of as the [[cocycle space]] for [[rational Cohomotopy|rational 4-Cohomotopy]], see \hyperlink{FiorenzaSatiSchreiber16}{FSS16, Section 3}. \begin{example} \label{}\hypertarget{}{} Let $X = S^4$ be the [[4-sphere]]. The corresponding [[rational n-sphere]] has minimal Sullivan model \begin{displaymath} (\wedge^\bullet \langle g_4, g_7 \rangle, d) \end{displaymath} with \begin{displaymath} d g_4 = 0\,,\;\;\;\; d g_7 = -\tfrac{1}{2} g_4 \wedge g_4 \,. \end{displaymath} Hence prop. \ref{SullivanModelForTheFreeLoopSpace} gives for the rationalization of $\mathcal{L}S^4$ the model \begin{displaymath} ( \wedge^\bullet \langle \omega_4, \omega_6, h_3, h_7 \rangle , d_{\mathcal{L}S^4} ) \end{displaymath} with \begin{displaymath} \begin{aligned} d_{\mathcal{L}S^4} h_3 & = 0 \\ d_{\mathcal{L}S^4} \omega_4 & = 0 \\ d_{\mathcal{L}S^4} \omega_6 & = h_3 \wedge \omega_4 \\ d_{\mathcal{L}S^4} h_7 & = -\tfrac{1}{2} \omega_4 \wedge \omega_4 \\ \end{aligned} \end{displaymath} and prop. \ref{ModelForS1quotient} gives for the rationalization of $\mathcal{L}S^4 / / S^1$ the model \begin{displaymath} ( \wedge^\bullet \langle \omega_2, \omega_4, \omega_6, h_3, h_7 \rangle , d_{\mathcal{L}S^4 / / S^1} ) \end{displaymath} with \begin{displaymath} \begin{aligned} d_{\mathcal{L}S^4 / / S^1} h_3 & = 0 \\ d_{\mathcal{L}S^4 / / S^1} \omega_2 & = 0 \\ d_{\mathcal{L}S^4 / / S^1} \omega_4 & = h_3 \wedge \omega_2 \\ d_{\mathcal{L}S^4 / / S^1} \omega_6 & = h_3 \wedge \omega_4 \\ d_{\mathcal{L}S^4 / / S^1} h_7 & = -\tfrac{1}{2} \omega_4 \wedge \omega_4 + \omega_2 \wedge \omega_6 \end{aligned} \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} Let $\hat \mathfrak{g} \to \mathfrak{g}$ be a [[central extension|central]] [[Lie algebra extension]] by $\mathbb{R}$ of a finite dimensional Lie algebra $\mathfrak{g}$, and let $\mathfrak{g} \longrightarrow b \mathbb{R}$ be the corresponding [[L-∞ algebra cohomology|L-∞ 2-cocycle]] with coefficients in the [[line Lie n-algebra|line Lie 2-algebra]] $b \mathbb{R}$, hence ([[schreiber:The brane bouquet|FSS 13, prop. 3.5]]) so that there is a [[homotopy fiber sequence]] of [[L-∞ algebras]] \begin{displaymath} \hat \mathfrak{g} \longrightarrow \mathfrak{g} \overset{\omega_2}{\longrightarrow} b \mathbb{R} \end{displaymath} which is dually modeled by \begin{displaymath} CE(\hat \mathfrak{g}) = ( \wedge^\bullet ( \mathfrak{g}^\ast \oplus \langle e \rangle ), d_{\hat \mathfrak{g}}|_{\mathfrak{g}^\ast} = d_{\mathfrak{g}},\; d_{\hat \mathfrak{g}} e = \omega_2) \,. \end{displaymath} For $X$ a space with [[Sullivan model]] $(A_X,d_X)$ write $\mathfrak{l}(X)$ for the corresponding [[L-∞ algebra]], i.e. for the $L_\infty$-algebra whose [[Chevalley-Eilenberg algebra]] is $(A_X,d_X)$: \begin{displaymath} CE(\mathfrak{l}X) = (A_X,d_X) \,. \end{displaymath} Then there is an [[isomorphism]] of [[hom-sets]] \begin{displaymath} Hom_{L_\infty Alg}( \hat \mathfrak{g}, \mathfrak{l}(S^4) ) \;\simeq\; Hom_{L_\infty Alg/b \mathbb{R}}( \mathfrak{g}, \mathfrak{l}( \mathcal{L}S^4 / S^1 ) ) \,, \end{displaymath} with $\mathfrak{l}(S^4)$ from prop. \ref{SullivanModelForTheFreeLoopSpace} and $\mathfrak{l}(\mathcal{L}S^4 //S^1)$ from prop. \ref{ModelForS1quotient}, where on the right we have homs in the [[slice category|slice]] over the [[line Lie n-algebra|line Lie 2-algebra]], via prop. \ref{ModelForS1quotient}. Moreover, this isomorphism takes \begin{displaymath} \hat \mathfrak{g} \overset{(g_4, g_7)}{\longrightarrow} \mathfrak{l}(S^4) \end{displaymath} to \begin{displaymath} \itexarray{ \mathfrak{g} && \overset{(\omega_2,\omega_4, \omega_6, h_3,h_7)}{\longrightarrow} && \mathfrak{l}( \mathcal{L}X / S^1 ) \\ & {}_{\mathllap{\omega_2}}\searrow && \swarrow_{\mathrlap{\omega_2}} \\ && b \mathbb{R} } \,, \end{displaymath} where \begin{displaymath} \omega_4 = g_4 - h_3 \wedge e \;\,, \;\;\; h_7 = g_7 + \omega_6 \wedge e \end{displaymath} with $e$ being the central generator in $CE(\hat \mathfrak{g})$ from above, and where the equations take place in $\wedge^\bullet \hat \mathfrak{g}^\ast$ with the defining inclusion $\wedge^\bullet \mathfrak{g}^\ast \hookrightarrow \wedge^\bullet \mathfrak{g}^\ast$ understood. \end{prop} This is observed in (\hyperlink{FiorenzaSatiSchreiber16}{Fiorenza-Sati-Schreiber 16}, \hyperlink{FSS16b}{FSS 16b}), where it serves to formalize, on the level of [[rational homotopy theory]], the [[double dimensional reduction]] of [[M-branes]] in [[M-theory]] to [[D-branes]] in [[type IIA string theory]] (for the case that $\mathfrak{g}$ is type IIA [[super Minkowski spacetime]] $\mathbb{R}^{9,1\vert \mathbf{16}+ \overline{\mathbf{16}}}$ and $\hat \mathfrak{g}$ is 11d [[super Minkowski spacetime]] $\mathbb{R}^{10,1\vert \mathbf{32}}$, and the cocycles are those of [[schreiber:The brane bouquet]]). \begin{proof} By the fact that the underlying graded algebras are free, and since $e$ is a generator of odd degree, the given decomposition for $\omega_4$ and $h_7$ is unique. Hence it is sufficient to observe that under this decomposition the defining equations \begin{displaymath} d g_4 = 0 \,,\;\;\; d g_{7} = -\tfrac{1}{2} g_4 \wedge g_4 \end{displaymath} for the $\mathfrak{l}S^4$-valued cocycle on $\hat \mathfrak{g}$ turn into the equations for a $\mathfrak{l} ( \mathcal{L}S^4 / S^1 )$-valued cocycle on $\mathfrak{g}$. This is straightforward: \begin{displaymath} \begin{aligned} & d_{\hat \mathfrak{g}} ( \omega_4 + h_3 \wedge e ) = 0 \\ \Leftrightarrow \;\;\;\; & d_{\mathfrak{g}} (\omega_4 - h_3 \wedge \omega_2) = 0 \;\;\; and \;\;\; d_{\mathfrak{g}} h_3 = 0 \\ \Leftrightarrow \;\;\;\; & d_{\mathfrak{g}} \omega_4 = h_3 \wedge \omega_2 \;\;\; and \;\;\; d_{\mathfrak{g}} h_3 = 0 \end{aligned} \end{displaymath} as well as \begin{displaymath} \begin{aligned} & d_{\hat \mathfrak{g}} ( h_7 - \omega_6 \wedge e ) = -\tfrac{1}{2}( \omega_4 + h_3 \wedge e ) \wedge (\omega_4 + h_3\wedge e) \\ \Leftrightarrow \;\;\;\; & d_\mathfrak{g} h_7 - \omega_6 \wedge \omega_2 = -\tfrac{1}{2}\omega_4 \wedge \omega_4 \;\;\; and \;\;\; - d_\mathfrak{g} \omega_6 = - h_3 \wedge \omega_4 \\ \Leftrightarrow \;\;\;\; & d_\mathfrak{g} h_7 = -\tfrac{1}{2}\omega_4 \wedge \omega_4 + \omega_6 \wedge \omega_2 \;\;\; and \;\;\; d_\mathfrak{g} h_6 = h_3 \wedge \omega_4 \end{aligned} \end{displaymath} \end{proof} \hypertarget{free_loop_space_of_the_2sphere}{}\subsubsection*{{Free loop space of the 2-sphere}}\label{free_loop_space_of_the_2sphere} \begin{example} \label{}\hypertarget{}{} Let $X = S^2$ be the [[2-sphere]]. The corresponding [[rational n-sphere]] has minimal Sullivan model \begin{displaymath} (\wedge^\bullet \langle g_3, g_2 \rangle, d) \end{displaymath} with \begin{displaymath} d g_2 = 0\,,\;\;\;\; d g_3 = -\tfrac{1}{2} g_2 \wedge g_2 \,. \end{displaymath} Hence prop. \ref{SullivanModelForTheFreeLoopSpace} gives for the rationalization of $\mathcal{L}S^2$ the model \begin{displaymath} ( \wedge^\bullet \langle \omega^A_2, \omega^B_2, h_1, h_3 \rangle , d_{\mathcal{L}S^2} ) \end{displaymath} with \begin{displaymath} \begin{aligned} d_{\mathcal{L}S^2} h_1 & = 0 \\ d_{\mathcal{L}S^2} \omega^A_2 & = 0 \\ d_{\mathcal{L}S^2} \omega^B_2 & = h_1 \wedge \omega_2^A \\ d_{\mathcal{L}S^2} h_3 & = -\tfrac{1}{2} \omega^A_2 \wedge \omega^A_2 \end{aligned} \end{displaymath} and prop. \ref{ModelForS1quotient} gives for the rationalization of $\mathcal{L}S^2 / / S^1$ the model \begin{displaymath} ( \wedge^\bullet \langle \omega^A_2, \omega^B_2, \omega^C_2 h_1, h_3 , d_{\mathcal{L}S^2 / / S^1} ) \end{displaymath} with \begin{displaymath} \begin{aligned} d_{\mathcal{L}S^2} h_1 & = 0 \\ d_{\mathcal{L}S^2} \omega^A_2 & = \omega^C_2 \wedge h_1 \\ d_{\mathcal{L}S^2} \omega^B_2 & = h_1 \wedge \omega_2^A \\ d_{\mathcal{L}S^2} \omega^C_2 & = 0 \\ d_{\mathcal{L}S^2} h_3 & = -\tfrac{1}{2} \omega^A_2 \wedge \omega^A_2 + \omega^C_2 \wedge \omega^B_2 \end{aligned} \,. \end{displaymath} \end{example} $\backslash$linebreak \hypertarget{IteratedLoopSpacesOfNSpheres}{}\subsubsection*{{Iterated based loop spaces of $n$-spheres}}\label{IteratedLoopSpacesOfNSpheres} By iterating the Sullivan model construction for the [[based loop space]] from Prop. \ref{SullivanModelForBasedLoopSpace} and using the [[Sullivan models of n-spheres]] we have that: \begin{prop} \label{SullivanModelsOfMapsFromSkToSnFornLargerk}\hypertarget{SullivanModelsOfMapsFromSkToSnFornLargerk}{} \textbf{([[Sullivan models]] for [[iterated loop spaces]] of [[n-spheres]])} The [[Sullivan model]] of the $k$-fold [[iterated based loop space]] $\Omega^k S^n$ of the [[n-sphere]] for $k \lt n$ is \begin{displaymath} CE\mathfrak{l} \big( \Omega^k S^n \big) \;=\; \left\{ \itexarray{ \left( \itexarray{ d\,\omega_{n-k} & = 0 } \right) &\vert& n \;\text{is odd} \\ \left( \itexarray{ d\,\omega_{n-k} & = 0 \\ d\,\omega_{2n-1-k} & = 0 } \right) &\vert& n \;\text{is even} } \right. \phantom{AAAA} \text{for}\; k \lt n \,. \end{displaymath} \end{prop} (see also \hyperlink{KallelSjerve99}{Kallel-Sjerve 99, Prop. 4.10}) For the edge case $\Omega^D S^D$ the above formula does not apply, since $\Omega^{D-1} S^D$ is not [[simply connected topological space|simply connected]] (its [[fundamental group]] is $\pi_1\big( \Omega^{D-1}S^D \big) = \pi_0 \big(\Omega^D S^D\big) = \pi_D(S^D) = \mathbb{Z}$, the 0th [[stable homotopy group of spheres]]). But: \begin{example} \label{RationalModelsForBasedMappingSpaceSDToSD}\hypertarget{RationalModelsForBasedMappingSpaceSDToSD}{} The rational model for $\Omega^D S^D$ follows from \href{Sullivan+model+of+mapping+space#RationalHomotopyTypeOfMapsNSphereToNsphere}{this Prop.} by realizing the pointed mapping space as the [[homotopy fiber]] of the [[evaluation map]] from the free mapping space: \begin{displaymath} \itexarray{ \mathllap{ \Omega^D S^D \simeq \;} Maps^{\ast/\!}\big( S^D, S^D\big) \\ \big\downarrow^{\mathrlap{fib(ev_\ast)}} \\ Maps(S^D, S^D) \\ \big\downarrow^{\mathrlap{ev_\ast}} \\ S^D } \end{displaymath} This yields for instance the following examples. In odd dimensions: $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}3, S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} $\backslash$ast $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}3, S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$ard{\tt \symbol{94}}-\{ ($\backslash$mathrm\{id\}\_\{S{\tt \symbol{94}}3\})\_\{n $\backslash$in $\backslash$mathbb\{N\}\} \} $\backslash$ S{\tt \symbol{94}}3 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}3 $\backslash$end\{xymatrix\} In even dimensions: (In the following $h_{\mathbb{K}}$ denotes the [[Hopf fibration]] of the [[division algebra]] $\mathbb{K}$, hence $h_{\mathbb{C}}$ denotes the [[complex Hopf fibration]] and $h_{\mathbb{H}}$ the [[quaternionic Hopf fibration]].) $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}2, S{\tt \symbol{94}}2 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}1 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}2, S{\tt \symbol{94}}2 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$big( S{\tt \symbol{94}}2 $\backslash$times S{\tt \symbol{94}}1 $\backslash$big) $\backslash$sqcup $\backslash$big( $\backslash$underset\{ n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$big( p\_1, (h\_\{$\backslash$mathbb\{C\}\})\_\{n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{N\}\} $\backslash$big) \} $\backslash$ S{\tt \symbol{94}}2 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}2 $\backslash$end\{xymatrix\} $\backslash$begin\{xymatrix\} $\backslash$mathrm\{Maps\}{\tt \symbol{94}}\{$\backslash$ast/!\} $\backslash$big( S{\tt \symbol{94}}4, S{\tt \symbol{94}}4 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{fib\}\_\{($\backslash$mathrm\{ev\}\_$\backslash$ast)\} \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$underset\{ n $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}3 $\backslash$ar@\{{\tt \symbol{94}}\{(\}-{\tt \symbol{62}}\}d $\backslash$ $\backslash$mathrm\{Maps\} $\backslash$big( S{\tt \symbol{94}}4, S{\tt \symbol{94}}4 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$mathrm\{ev\}\_$\backslash$ast \} $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathbb\{Q\}\} \} \& $\backslash$big( S{\tt \symbol{94}}4 $\backslash$times S{\tt \symbol{94}}3 $\backslash$big) $\backslash$sqcup $\backslash$big( $\backslash$underset\{ n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{Z\} \}\{$\backslash$sqcup\} S{\tt \symbol{94}}7 $\backslash$big) $\backslash$ard{\tt \symbol{94}}-\{ $\backslash$big( p\_1, (h\_\{$\backslash$mathbb\{H\}\})\_\{n $\backslash$neq 0 $\backslash$in $\backslash$mathbb\{N\}\} $\backslash$big) \} $\backslash$ S{\tt \symbol{94}}4 $\backslash$ar@\{=\}r \& S{\tt \symbol{94}}4 $\backslash$end\{xymatrix\} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hochschild homology]] \item [[cyclic homology]] \item [[rational model of mapping spaces]] \item [[rational Cohomotopy]] \end{itemize} [[!include Sullivan models -- examples]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original result is due to \begin{itemize}% \item [[Micheline Vigué-Poirrier]], [[Dennis Sullivan]], \emph{The homology theory of the closed geodesic problem}, J. Differential Geometry 11 (1976) 633-644. \item [[Micheline Vigué-Poirrier]], Dan Burghelea, \emph{A model for cyclic homology and algebraic K-theory of 1-connected topological spaces}, J. Differential Geom. Volume 22, Number 2 (1985), 243-253 (\href{https://projecteuclid.org/euclid.jdg/1214439821}{Euclid}) \end{itemize} Review is in \begin{itemize}% \item [[Yves Félix]], [[Steve Halperin]] and J.C. Thomas, \emph{Rational Homotopy Theory}, Graduate Texts in Mathematics, 205, Springer-Verlag, 2000. \item [[Kathryn Hess]], example 2.5 of \emph{Rational homotopy theory: a brief introduction} (\href{http://arxiv.org/abs/math.AT/0604626}{math.AT/0604626}) \item [[Yves Félix]], John Oprea, [[Daniel Tanre]], \emph{Algebraic models in geometry}, Oxford graduate texts in mathematics 17 (2008) \item A. Yu. Onishchenko and Th. Yu. Popelensky, \emph{Rational cohomology of the free loop space of a simply connected 4-manifold}, J. Fixed Point Theory Appl. 12 (2012) 69--9 (\href{http://link.springer.com/article/10.1007/s11784-013-0100-0}{DOI 10.1007/s11784-013-0100-0}) \item [[Luc Menichi]], \emph{Sullivan models and free loop space}, A short introduction to Sullivan models, with the Sullivan model of a free loop space and the detailed proof of Vigu\'e{}-Sullivan theorem on the Betti numbers of free loop space. Workshop on free loop space \`a{} Strasbourg, November 2008 (scanned notes \href{http://math.univ-angers.fr/perso/lmenichi/Sullivan_models_free_loop_space.pdf}{pdf}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]]: \emph{[[schreiber:Rational sphere valued supercocycles in M-theory|Rational sphere valued supercocycles in M-theory and type IIA string theory]]}, Journal of Geometry and Physics, Volume 114, Pages 91-108 (2017) (\href{https://arxiv.org/abs/1606.03206}{arXiv:1606.03206}) \item [[nLab:Domenico Fiorenza]], [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:T-Duality from super Lie n-algebra cocycles for super p-branes]]} (\href{https://arxiv.org/abs/1611.06536}{arXiv:1611.06536}) \end{itemize} General background on [[Hochschild homology]] and [[cyclic homology]] is in \begin{itemize}% \item [[John D.S. Jones]], \emph{Cyclic homology and equivariant homology}, Invent. Math. \textbf{87}, 403-423 (1987) (\href{https://math.berkeley.edu/~nadler/jones.pdf}{pdf}) \item [[Jean-Louis Loday]], \emph{Cyclic homology}, Grundlehren Math.Wiss. \textbf{301}, Springer (1998) \item [[Jean-Louis Loday]], \emph{Free loop space and homology} (\href{https://arxiv.org/abs/1110.0405}{arXiv:1110.0405}) \end{itemize} The case of [[iterated based loop spaces]] of [[n-spheres]] is discussed also in \begin{itemize}% \item [[Sadok Kallel]], [[Denis Sjerve]], \emph{On Brace Products and the Structure of Fibrations with Section}, 1999 (\href{https://www.math.ubc.ca/~sjer/brace.pdf}{pdf}, [[KallelSjerv99.pdf:file]]) \end{itemize} [[!redirects Sullivan models of free loop space]] [[!redirects Sullivan model of free loop spaces]] [[!redirects Sullivan model of the free loop space]] [[!redirects Sullivan models of the free loop space]] [[!redirects Sullivan model of a free loop space]] [[!redirects Sullivan models of a free loop space]] [[!redirects Sullivan models of free loop spaces]] [[!redirects Sullivan model for free loop space]] [[!redirects Sullivan models for free loop space]] [[!redirects Sullivan model for free loop spaces]] [[!redirects Sullivan models for free loop spaces]] [[!redirects Sullivan model of based loop space]] [[!redirects Sullivan models of based loop spaces]] [[!redirects Sullivan model for based loop space]] [[!redirects Sullivan models for based loop spaces]] \end{document}