\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Sweedler coring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{GeomInterpretationOfCoring}{Geometric interpretation}\dotfill \pageref*{GeomInterpretationOfCoring} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_ring_extensions}{Relation to ring extensions}\dotfill \pageref*{relation_to_ring_extensions} \linebreak \noindent\hyperlink{DescentIntermsOfCoringModules}{Descent in terms of coring comodules}\dotfill \pageref*{DescentIntermsOfCoringModules} \linebreak \noindent\hyperlink{ComonadicDescent}{In terms of (co)monadic descent}\dotfill \pageref*{ComonadicDescent} \linebreak \noindent\hyperlink{GeomInterpretationOfDescent}{Geometric interpretation}\dotfill \pageref*{GeomInterpretationOfDescent} \linebreak \noindent\hyperlink{RelationToGeneralizedCohomology}{Relation to generalized cohomology and Adams spectral sequence}\dotfill \pageref*{RelationToGeneralizedCohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A Sweedler [[coring]] is an algebraic structure that is roughly the [[duality|formal dual]] of the [[?ech nerve]] of a [[cover]]: it is used to describe [[descent]] in algebraic contexts. See also [[monadic descent]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} Let $f : R \hookrightarrow S$ be the extension of associative unital $k$-[[associative algebra|algebra]]s (where $k$ is a commutative unital [[ring]]). The corresponding \textbf{canonical coring} or \textbf{Sweedler coring} is the $S$-[[coring]] \begin{displaymath} C = S\otimes_R S \end{displaymath} with coproduct \begin{displaymath} \Delta : C\to C\otimes_S C \cong S\otimes_R S\otimes_R S \end{displaymath} given by \begin{displaymath} \Delta: s_1\otimes s_2 \mapsto s_1\otimes 1 \otimes s_2 \end{displaymath} and counit \begin{displaymath} \epsilon : C\to S \end{displaymath} given by \begin{displaymath} \epsilon: s_1 \otimes s_2 \mapsto s_1 s_2 \,. \end{displaymath} The element $1\otimes 1$ is a [[grouplike element]] in the Sweedler's coring. \hypertarget{GeomInterpretationOfCoring}{}\subsubsection*{{Geometric interpretation}}\label{GeomInterpretationOfCoring} We give a dual geometric interpretation of the Sweedler coring. Suppose a context of spaces and function algebras on spaces that satisfies the basic axioms of [[geometric function theory]], in that the algebra of functions $C(Y_1 \times_X Y_2)$ on a [[fiber product]] \begin{displaymath} \itexarray{ Y_1 \times_X Y_2 &\to& Y_2 \\ \downarrow && \downarrow \\ Y_1 &\to& X } \end{displaymath} is the [[tensor product]] of the functions on the factors: \begin{displaymath} C(Y_1 \times_X Y_2) = C(Y_1) \otimes_{C(X)} C(Y_2) \,. \end{displaymath} Then let $\pi : Y \to X$ be a morphism of spaces and set \begin{displaymath} R := C(X) \end{displaymath} and \begin{displaymath} S = C(Y) \end{displaymath} and \begin{displaymath} (R \hookrightarrow S) := \pi^* : C(X) \to C(Y) \,. \end{displaymath} The morphism $\pi$ induces its augmented [[?ech nerve]] \begin{displaymath} \left( \cdots \stackrel{\to}{\stackrel{\to}{\stackrel{\to}{\to}}} Y \times_X Y \times_X Y \stackrel{\to}{\stackrel{\to}{\to}} Y \times_X Y \stackrel{\to}{\to} Y \stackrel{\pi}{\to} X \right) \,. \end{displaymath} Taking function algebras of this yields, by the above, \begin{displaymath} \left( \cdots \stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\leftarrow}}} S \otimes_R S \otimes_R S \stackrel{\leftarrow}{\stackrel{\leftarrow}{\leftarrow}} S \otimes_R S \stackrel{\leftarrow}{\leftarrow} S \stackrel{\pi^*}{\leftarrow} R \right) \,. \end{displaymath} Writing again $C = S \otimes_R S$ for the Sweedler coring, this is \begin{displaymath} \left( \cdots \stackrel{\leftarrow}{\stackrel{\leftarrow}{\stackrel{\leftarrow}{\leftarrow}}} C \otimes_S C \stackrel{\leftarrow}{\stackrel{\leftarrow}{\leftarrow}} C \stackrel{\leftarrow}{\leftarrow} S \stackrel{\pi^*}{\leftarrow} R \right) \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_ring_extensions}{}\subsubsection*{{Relation to ring extensions}}\label{relation_to_ring_extensions} Various properties of canonical coring correspond to adequate properties of the ring extension. For example, [[coseparable coring|coseparable]] Sweedler corings correspond to [[split extension]]s (the $k$-algebra extension $R\to S$ is split if there is an $R$-bimodule map $h: S\to R$ with $h(1_S) = 1_R$). \hypertarget{DescentIntermsOfCoringModules}{}\subsubsection*{{Descent in terms of coring comodules}}\label{DescentIntermsOfCoringModules} Given a morphism $f : R \to S$ with corresponding Sweedler coring $(C = S \otimes_R S,\Delta,\epsilon)$ as above, the category of [[descent]] data $\mathrm{Desc}(S/R)$ for the categories of right modules along $k$-algebra extension $R\to S$ is precisely the category of right $C$-[[comodule]]s. In other words, the objects of $\mathrm{Desc}(S/R)$ are the pairs $(N,\alpha)$ where $N$ is a right $S$-[[module]], and $\alpha: N\to N\otimes_R S$ is a right $S$-module morphism and if we write $\alpha(m) = \sum_i m_i \otimes s_i$ then \begin{itemize}% \item $\sum_i \alpha(m_i)\otimes s_i = \sum_i m_i\otimes 1\otimes s_i$, \item $\sum_i m_i s_i = m$. \end{itemize} \hypertarget{ComonadicDescent}{}\paragraph*{{In terms of (co)monadic descent}}\label{ComonadicDescent} This [[coring]]-formulation of [[descent]] may be understood as special case of [[comonadic descent]] (see also the discussion at [[Bénabou?Roubaud theorem]]). See e.g. (\hyperlink{Hess10}{Hess 10, section 2}) for a review. We spell this out in a bit more detail: The [[bifibration]] in question is $p :$ [[Mod]] $\to$ [[CRing]] that sends an object in the category [[Mod]] of [[module]]s to the ring that it is a module over. A descent datum for a morphism $f : R \to S$ with respect to this bifibration is a (co)algebra object over the co[[monad]] $f_* f^*$ induced by this morphism. We have that \begin{itemize}% \item the morphism $f_*$ sends an $R$-module $N$ to the $S$-module $N \otimes_R S$; \item the morphism $f^*$ sends an $S$-module $P$ to the $R$-module $P \otimes_S S_R$, where $S_R$ is $S$ regarded as a left $S$- and a right $R$-module. So $P \otimes_S S_R$ is just the $S$-module $P$ with only the right $R$-action remembered. \end{itemize} Accordingly, the comonad with underlying functor $f_* f^*$ sends an $S$-module $P$ to the $S$-module $P \otimes_S S \otimes_R S = P \otimes_S C$. A (co)algebra object for this comonad is hence a co-action morphism \begin{displaymath} P \to P \otimes_S C \end{displaymath} compatible with the monad action. This is precisely a comodule over the Sweedler coring, as defined above. \hypertarget{GeomInterpretationOfDescent}{}\paragraph*{{Geometric interpretation}}\label{GeomInterpretationOfDescent} Descent for Sweedler corings is a special case of [[monadic descent|comonadic descent]]. We describe this in detail and relate it by duality to the geometrically more intuitive \href{http://ncatlab.org/nlab/show/monadic+descent#ForCodomainFibs}{monadic descent for codomain fibrations}. Assuming again a suitable geometric context as above, we may identify a [[module]] over $R = C(X)$ with (the collection of [[section]]s of) a [[vector bundle]] (or rather a suitable generalization of that: a [[coherent sheaf]]) over $X$. Similarly for $Y$. So we write \begin{displaymath} Vec(X) := R Mod \end{displaymath} and \begin{displaymath} Vec(Y) := S Mod \end{displaymath} for the corresponding [[category|categories]] of [[module]]s. The assignment of such categories to spaces \begin{displaymath} Vec : Z \mapsto Vec(Z) \end{displaymath} extends to a contravariant [[pseudofunctor]] \begin{displaymath} Vec : Spaces^{op} \to Cat \end{displaymath} by assigning to a morphism $f : Y \to X$ of spaces the corresponding [[functor]] \begin{displaymath} Vec(X) \simeq C(X) Mod \stackrel{- \otimes_{f} C(Y)}{\to} C(Y) Mod \simeq Vec(Y) \,. \end{displaymath} This way $Vec$ becomes a [[stack|prestack]] of categories on our category of spaces. If this prestack satisfies [[descent]] along suitable [[cover]]s, it is a [[stack]]. Geometrically this is the case if for each morphism $\pi : Y\to X$ that is regarded as a [[cover]], the category $Desc(Y,Vec)$ whose objects are tuples consisting of \begin{itemize}% \item an [[object]] $a \in Vec(Y)$ \item an [[isomorphism]] $g : \pi_1^* a \to \pi_2^* a$ \item such that \begin{displaymath} \itexarray{ && \pi_2^* a \\ & {}^{\mathllap{\pi_{12}^* g}}\nearrow && \searrow^{\mathrlap{\pi_{23}^* g}} \\ \pi_1^* a &&\stackrel{\pi_{13}^*}{\to}&& \pi_3^* } \end{displaymath} commutes. \end{itemize} Morphism are defined similarly (see [[stack]] and [[descent]] for details). To get the geometric pucture that underlies, by duality, the above comodule definition of descent, we need to reformulate this just a little bit more: every ordinary [[vector bundle]] $E \to X$ (of finite rank) is the [[associated bundle]] $E \simeq P \times_{O(n)} V$ of an [[orthogonal group|O(n)]]-[[principal bundle]] $P \to X$, and as such its [[section]]s may be identified with $O(n)$-equivariant functions $P \to V \simeq \mathbb{R}^n$ on the total space of $P$. Using this we may think of the $C(X)$-module of sections of $E$ as a submodule of the $C(X)$-module of all functions on $P$ \begin{displaymath} \Gamma(E) \subset C(P) \,. \end{displaymath} We now reformulate the geometric descent for [[vector bundle]]s in terms of geometric descent for their underlying [[principal bundle]]s, and then take functions on everything in sight to obtain the comodule definition of descent that we want to describe: A descent datum (transition function) for a [[principal bundle]] $Q \to Y$ may be thought of as the the morphism $g$ in the double [[pullback]] diagram \begin{displaymath} \itexarray{ &&Y\times_X Y \times_Y Q &\to& Q \\ &&\downarrow && \downarrow \\ &{}^{\mathllap{g}}\swarrow&Y \times_X Y &\to& Y \\ &&\downarrow && \downarrow^{\mathrlap{\pi}} \\ Q &\to& Y &\stackrel{\pi}{\to}& X } \,. \end{displaymath} Because here $Y \times_X Y \times_Y Q$ is the space whose points consist of a point in a double overlap of the cover and a point in the fiber of $Q$ over that with respect to one patch, and the morphism identifies this with a point in the fiber of $Q$ regarded as sitting over the other patch. Analogously, there is a cocycle condition on $g$ on triple overlaps. Now, blindly applying our functor that takes functions of spaces to the above diagram yields the double [[pushout]] diagram \begin{displaymath} \itexarray{ &&C(Y\times_X Y \times_Y Q) &\leftarrow& C(Q) \\ &&\uparrow && \uparrow \\ &{}^{\mathllap{g}^*}\nearrow&C(Y \times_X Y) &\leftarrow& C(Y) \\ &&\uparrow && \uparrow^{\mathrlap{\pi^*}} \\ C(Q) &\leftarrow& C(Y) &\stackrel{\pi^*}{\leftarrow}& C(X) } \,. \end{displaymath} We may restrict to $N := \Gamma(E) \subset C(Q)$ as just discussed and switch to the notation from above to get \begin{displaymath} \itexarray{ &&N \otimes_{S} C &\leftarrow& N \\ &&\uparrow && \uparrow \\ &{}^{\mathllap{g}^*}\nearrow& C &\leftarrow& S \\ &&\uparrow && \uparrow^{\mathrlap{\pi^*}} \\ N &\leftarrow& S &\stackrel{\pi^*}{\leftarrow}& R } \,. \end{displaymath} The morphism \begin{displaymath} \alpha := g^* : N \to N \otimes_S C \end{displaymath} obtained this way is the co-action morphism from the above algebraic definition. The further cocycle condition on $g$ similarly translates into the condition that $\alpha$ really satisfies the [[comodule]] property. \hypertarget{RelationToGeneralizedCohomology}{}\subsubsection*{{Relation to generalized cohomology and Adams spectral sequence}}\label{RelationToGeneralizedCohomology} Applied to [[E-infinity rings]] the Sweedler coring construction yields the [[Hopf algebroids]] of dual [[Steenrod algebras]] and appears in the [[Adams spectral sequence]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Amitsur complex]], [[Hopf algebroid]] \item [[descent]] \begin{itemize}% \item [[cover]] \item [[cohomological descent]] \item [[monadic descent]], \begin{itemize}% \item \textbf{Sweedler coring} \item [[monadic descent]], [[higher monadic descent]] \item [[descent in noncommutative algebraic geometry]] \end{itemize} \end{itemize} \item [[sheaf]], [[(2,1)-sheaf]], [[2-sheaf]] [[(∞,1)-sheaf]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Sweedler corings are named after [[Moss Sweedler]]. A textbook account is in \begin{itemize}% \item [[Tomasz Brzezinski]], [[Robert Wisbauer]], section 29 of \emph{Corings and Comodules}, Cambridge University Press, London Math. Soc. LN 309 (2003), (\href{http://www.math.uni-duesseldorf.de/~wisbauer/corinerr.pdf}{errata pdf}) \end{itemize} Section 29 there discusses the relation to the [[Amitsur complex]] and the [[descent theorem]]. \begin{itemize}% \item MO: \href{http://mathoverflow.net/questions/150547/how-is-a-descent-datum-the-same-as-a-comodule-structure}{how-is-a-descent-datum-the-same-as-a-comodule-structure} \end{itemize} Discussion in the context of ([[higher monadic descent|higher]]) [[monadic descent]] is around example 2.24 of \begin{itemize}% \item [[Kathryn Hess]], section 6 of \emph{A general framework for homotopic descent and codescent} (\href{http://arxiv.org/abs/1001.1556}{arXiv:1001.1556}) \end{itemize} [[!redirects Sweedler corings]] [[!redirects Sweedler's coring]] [[!redirects Sweedler's corings]] [[!redirects canonical coring]] [[!redirects canonical corings]] [[!redirects canonical co-ring]] [[!redirects canonical co-rings]] \end{document}