\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Symmetric spectra} This page collects material related to the lecture notes \begin{itemize}% \item [[Stefan Schwede]], \emph{Symmetric spectra}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} on [[stable homotopy theory]] in terms of [[symmetric spectra]]. See also the \emph{[[Lectures on Equivariant Stable Homotopy Theory]]} and on \emph{[[Global homotopy theory]]} for the model on [[orthogonal spectra]] and [[equivariant stable homotopy theory]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{chapter_i_basics}{Chapter I. Basics}\dotfill \pageref*{chapter_i_basics} \linebreak \noindent\hyperlink{1_symmetric_spectra}{1. Symmetric spectra}\dotfill \pageref*{1_symmetric_spectra} \linebreak \noindent\hyperlink{2_properties_of_naive_homotopy_groups}{2. Properties of naive homotopy groups}\dotfill \pageref*{2_properties_of_naive_homotopy_groups} \linebreak \noindent\hyperlink{3_basic_constructions}{3. Basic constructions}\dotfill \pageref*{3_basic_constructions} \linebreak \noindent\hyperlink{31_symmetric_spectra_of_simplicial_sets}{3.1 Symmetric spectra of simplicial sets}\dotfill \pageref*{31_symmetric_spectra_of_simplicial_sets} \linebreak \noindent\hyperlink{32_constructions}{3.2 Constructions}\dotfill \pageref*{32_constructions} \linebreak \noindent\hyperlink{33_constructions_involving_ring_spectra}{3.3 Constructions involving ring spectra}\dotfill \pageref*{33_constructions_involving_ring_spectra} \linebreak \noindent\hyperlink{4_stable_equivalences}{4. Stable equivalences}\dotfill \pageref*{4_stable_equivalences} \linebreak \noindent\hyperlink{5_smash_product}{5. Smash product}\dotfill \pageref*{5_smash_product} \linebreak \noindent\hyperlink{6_homotopy_groups}{6. Homotopy groups}\dotfill \pageref*{6_homotopy_groups} \linebreak \noindent\hyperlink{7_relation_to_other_kinds_of_spectra}{7. Relation to other kinds of spectra}\dotfill \pageref*{7_relation_to_other_kinds_of_spectra} \linebreak \noindent\hyperlink{71_orthogonal_spectra}{7.1 Orthogonal spectra}\dotfill \pageref*{71_orthogonal_spectra} \linebreak \noindent\hyperlink{72_unitary_spectra}{7.2 Unitary spectra}\dotfill \pageref*{72_unitary_spectra} \linebreak \noindent\hyperlink{73_continuous_and_simplicial_functors}{7.3 Continuous and simplicial functors}\dotfill \pageref*{73_continuous_and_simplicial_functors} \linebreak \noindent\hyperlink{74_spaces}{7.4 $\Gamma$-spaces}\dotfill \pageref*{74_spaces} \linebreak \noindent\hyperlink{75_permutative_categories}{7.5 Permutative categories}\dotfill \pageref*{75_permutative_categories} \linebreak \noindent\hyperlink{76_spectra_as_enriched_functors}{7.6 Spectra as enriched functors}\dotfill \pageref*{76_spectra_as_enriched_functors} \linebreak \noindent\hyperlink{8_naive_versus_true_homotopy_groups}{8. Naive versus true homotopy groups}\dotfill \pageref*{8_naive_versus_true_homotopy_groups} \linebreak \noindent\hyperlink{history_credits_further_reading}{History, credits, further reading}\dotfill \pageref*{history_credits_further_reading} \linebreak \noindent\hyperlink{chapter_ii_the_stable_homotopy_category}{Chapter II. The stable homotopy category}\dotfill \pageref*{chapter_ii_the_stable_homotopy_category} \linebreak \noindent\hyperlink{1_the_stable_homotopy_category}{1. The stable homotopy category}\dotfill \pageref*{1_the_stable_homotopy_category} \linebreak \noindent\hyperlink{2_triangulated_structure}{2. Triangulated structure}\dotfill \pageref*{2_triangulated_structure} \linebreak \noindent\hyperlink{3_derived_smash_product}{3. Derived smash product}\dotfill \pageref*{3_derived_smash_product} \linebreak \noindent\hyperlink{4_grading}{4. Grading}\dotfill \pageref*{4_grading} \linebreak \noindent\hyperlink{5_generator}{5. Generator}\dotfill \pageref*{5_generator} \linebreak \noindent\hyperlink{6_homology_and_cohomology}{6. Homology and cohomology}\dotfill \pageref*{6_homology_and_cohomology} \linebreak \noindent\hyperlink{61_generalized_homology_and_cohomology}{6.1 Generalized homology and cohomology}\dotfill \pageref*{61_generalized_homology_and_cohomology} \linebreak \noindent\hyperlink{62_ordinary_homology_and_cohomology}{6.2 Ordinary homology and cohomology}\dotfill \pageref*{62_ordinary_homology_and_cohomology} \linebreak \noindent\hyperlink{63_moore_spectra}{6.3 Moore spectra}\dotfill \pageref*{63_moore_spectra} \linebreak \noindent\hyperlink{7_finite_spectra}{7. Finite spectra}\dotfill \pageref*{7_finite_spectra} \linebreak \noindent\hyperlink{8_connective_covers_and_postnikov_sections}{8. Connective covers and Postnikov sections}\dotfill \pageref*{8_connective_covers_and_postnikov_sections} \linebreak \noindent\hyperlink{9_localization_and_completion}{9. Localization and completion}\dotfill \pageref*{9_localization_and_completion} \linebreak \noindent\hyperlink{10_the_steenrod_algebra}{10. The Steenrod algebra}\dotfill \pageref*{10_the_steenrod_algebra} \linebreak \noindent\hyperlink{101_examples_and_applications}{10.1 Examples and applications}\dotfill \pageref*{101_examples_and_applications} \linebreak \noindent\hyperlink{102_hopf_algebra_structure}{10.2 Hopf algebra structure}\dotfill \pageref*{102_hopf_algebra_structure} \linebreak \noindent\hyperlink{103_the_adams_spectral_sequence}{10.3 The Adams spectral sequence}\dotfill \pageref*{103_the_adams_spectral_sequence} \linebreak \noindent\hyperlink{chapter_iii_model_structures}{Chapter III. Model structures}\dotfill \pageref*{chapter_iii_model_structures} \linebreak \noindent\hyperlink{1_symmetric_spectra_in_a_simplicial_category}{1. Symmetric spectra in a simplicial category}\dotfill \pageref*{1_symmetric_spectra_in_a_simplicial_category} \linebreak \noindent\hyperlink{2_flat_cofibrations}{2. Flat cofibrations}\dotfill \pageref*{2_flat_cofibrations} \linebreak \noindent\hyperlink{3_level_model_structures}{3. Level model structures}\dotfill \pageref*{3_level_model_structures} \linebreak \noindent\hyperlink{4_stable_model_structures}{4. Stable model structures}\dotfill \pageref*{4_stable_model_structures} \linebreak \noindent\hyperlink{5_operads_and_their_algebras}{5. Operads and their algebras}\dotfill \pageref*{5_operads_and_their_algebras} \linebreak \noindent\hyperlink{6_model_structures_for_algebras_over_an_operad}{6. Model structures for algebras over an operad}\dotfill \pageref*{6_model_structures_for_algebras_over_an_operad} \linebreak \noindent\hyperlink{7_connective_covers_of_structured_spectra}{7. Connective covers of structured spectra}\dotfill \pageref*{7_connective_covers_of_structured_spectra} \linebreak \noindent\hyperlink{chapter_iv_module_spectra}{Chapter IV. Module spectra}\dotfill \pageref*{chapter_iv_module_spectra} \linebreak \noindent\hyperlink{appendix_a_miscellaneous_tools}{Appendix A. Miscellaneous tools}\dotfill \pageref*{appendix_a_miscellaneous_tools} \linebreak \noindent\hyperlink{model_category_theory}{Model category theory}\dotfill \pageref*{model_category_theory} \linebreak \noindent\hyperlink{compactly_generated_spaces}{Compactly generated spaces}\dotfill \pageref*{compactly_generated_spaces} \linebreak \noindent\hyperlink{simplicial_sets}{Simplicial sets}\dotfill \pageref*{simplicial_sets} \linebreak \noindent\hyperlink{equivariant_homotopy_theory}{Equivariant homotopy theory}\dotfill \pageref*{equivariant_homotopy_theory} \linebreak \noindent\hyperlink{errata}{Errata}\dotfill \pageref*{errata} \linebreak \hypertarget{chapter_i_basics}{}\subsection*{{Chapter I. Basics}}\label{chapter_i_basics} \hypertarget{1_symmetric_spectra}{}\subsubsection*{{1. Symmetric spectra}}\label{1_symmetric_spectra} \begin{itemize}% \item [[symmetric spectrum]] \item [[ring spectrum]] \item [[module spectrum]] \end{itemize} Basic Examples: \begin{itemize}% \item [[sphere spectrum]] [[stable homotopy groups of spheres]] [[Hopf fibration]] \item [[suspension spectrum]] \item [[Eilenberg-MacLane spectrum]] [[HA]] (the claim about [[Eilenberg-MacLane spaces]] here is proven in (\href{Eilenberg-MacLane+space#AguilarGitlerPrieto02}{Aguilar-Gitler-Prieto 02, corollary 6.4.23}) ) \item [[Thom spectrum]] [[MO]], [[MU]] \item [[topological K-theory]], [[KU]] \end{itemize} \hypertarget{2_properties_of_naive_homotopy_groups}{}\subsubsection*{{2. Properties of naive homotopy groups}}\label{2_properties_of_naive_homotopy_groups} \begin{itemize}% \item [[stable homotopy groups]] \item \href{homotopy+group+of+a+spectrum#SuspensionIsomorphismOfStableHomotopyGroups}{suspension isomorphism} \end{itemize} \hypertarget{3_basic_constructions}{}\subsubsection*{{3. Basic constructions}}\label{3_basic_constructions} \hypertarget{31_symmetric_spectra_of_simplicial_sets}{}\paragraph*{{3.1 Symmetric spectra of simplicial sets}}\label{31_symmetric_spectra_of_simplicial_sets} \begin{itemize}% \item [[powering]] and [[copowering]] over [[sSet]] \end{itemize} \hypertarget{32_constructions}{}\paragraph*{{3.2 Constructions}}\label{32_constructions} \begin{itemize}% \item [[limits]] and [[colimits]] \item [[shift spectrum]] \item [[semistable symmetric spectrum]] \item [[mapping spectrum]] \item [[free symmetric spectrum]] \end{itemize} \hypertarget{33_constructions_involving_ring_spectra}{}\paragraph*{{3.3 Constructions involving ring spectra}}\label{33_constructions_involving_ring_spectra} \hypertarget{4_stable_equivalences}{}\subsubsection*{{4. Stable equivalences}}\label{4_stable_equivalences} \begin{itemize}% \item [[spectrification]] \end{itemize} \hypertarget{5_smash_product}{}\subsubsection*{{5. Smash product}}\label{5_smash_product} \begin{itemize}% \item [[smash product of spectra]] \end{itemize} \hypertarget{6_homotopy_groups}{}\subsubsection*{{6. Homotopy groups}}\label{6_homotopy_groups} \hypertarget{7_relation_to_other_kinds_of_spectra}{}\subsubsection*{{7. Relation to other kinds of spectra}}\label{7_relation_to_other_kinds_of_spectra} \hypertarget{71_orthogonal_spectra}{}\paragraph*{{7.1 Orthogonal spectra}}\label{71_orthogonal_spectra} \begin{itemize}% \item [[orthogonal spectrum]] \end{itemize} \hypertarget{72_unitary_spectra}{}\paragraph*{{7.2 Unitary spectra}}\label{72_unitary_spectra} \hypertarget{73_continuous_and_simplicial_functors}{}\paragraph*{{7.3 Continuous and simplicial functors}}\label{73_continuous_and_simplicial_functors} \begin{itemize}% \item [[excisive functor]], [[model structure for excisive functors]] \end{itemize} \hypertarget{74_spaces}{}\paragraph*{{7.4 $\Gamma$-spaces}}\label{74_spaces} \begin{itemize}% \item [[Gamma-space]] \end{itemize} \hypertarget{75_permutative_categories}{}\paragraph*{{7.5 Permutative categories}}\label{75_permutative_categories} \begin{itemize}% \item [[permutative category]] \end{itemize} \hypertarget{76_spectra_as_enriched_functors}{}\paragraph*{{7.6 Spectra as enriched functors}}\label{76_spectra_as_enriched_functors} \begin{itemize}% \item [[enriched functor]] \end{itemize} \hypertarget{8_naive_versus_true_homotopy_groups}{}\subsubsection*{{8. Naive versus true homotopy groups}}\label{8_naive_versus_true_homotopy_groups} \hypertarget{history_credits_further_reading}{}\subsubsection*{{History, credits, further reading}}\label{history_credits_further_reading} \begin{itemize}% \item [[highly structured spectra]] \item [[symmetric monoidal smash product of spectra]] \end{itemize} \hypertarget{chapter_ii_the_stable_homotopy_category}{}\subsection*{{Chapter II. The stable homotopy category}}\label{chapter_ii_the_stable_homotopy_category} \hypertarget{1_the_stable_homotopy_category}{}\subsubsection*{{1. The stable homotopy category}}\label{1_the_stable_homotopy_category} \begin{itemize}% \item [[stable homotopy category]] \end{itemize} \hypertarget{2_triangulated_structure}{}\subsubsection*{{2. Triangulated structure}}\label{2_triangulated_structure} \begin{itemize}% \item [[triangulated category]] \end{itemize} \hypertarget{3_derived_smash_product}{}\subsubsection*{{3. Derived smash product}}\label{3_derived_smash_product} \begin{itemize}% \item [[smash product of spectra]] \end{itemize} \hypertarget{4_grading}{}\subsubsection*{{4. Grading}}\label{4_grading} \begin{itemize}% \item [[ring spectrum]] \end{itemize} \hypertarget{5_generator}{}\subsubsection*{{5. Generator}}\label{5_generator} \hypertarget{6_homology_and_cohomology}{}\subsubsection*{{6. Homology and cohomology}}\label{6_homology_and_cohomology} \hypertarget{61_generalized_homology_and_cohomology}{}\paragraph*{{6.1 Generalized homology and cohomology}}\label{61_generalized_homology_and_cohomology} \begin{itemize}% \item [[generalized (Eilenberg-Steenrod) cohomology]] \item [[generalized homology]] \item [[Milnor exact sequence]] \item [[Kronecker pairing]] \item [[universal coefficient theorem]] \end{itemize} \hypertarget{62_ordinary_homology_and_cohomology}{}\paragraph*{{6.2 Ordinary homology and cohomology}}\label{62_ordinary_homology_and_cohomology} \begin{itemize}% \item [[ordinary cohomology]] \item [[Künneth theorem]] \item [[Hurewicz theorem]] \end{itemize} \hypertarget{63_moore_spectra}{}\paragraph*{{6.3 Moore spectra}}\label{63_moore_spectra} \begin{itemize}% \item [[Moore spectrum]] \end{itemize} \hypertarget{7_finite_spectra}{}\subsubsection*{{7. Finite spectra}}\label{7_finite_spectra} \begin{itemize}% \item [[Spanier-Whitehead category]] \item [[finite spectra]] \end{itemize} \hypertarget{8_connective_covers_and_postnikov_sections}{}\subsubsection*{{8. Connective covers and Postnikov sections}}\label{8_connective_covers_and_postnikov_sections} \begin{itemize}% \item [[connective cover]] \item [[Postnikov tower]] \end{itemize} \hypertarget{9_localization_and_completion}{}\subsubsection*{{9. Localization and completion}}\label{9_localization_and_completion} \begin{itemize}% \item [[localization]], [[formal completion]] \item [[fracture theorem]] \end{itemize} \hypertarget{10_the_steenrod_algebra}{}\subsubsection*{{10. The Steenrod algebra}}\label{10_the_steenrod_algebra} \begin{itemize}% \item [[cohomology operation]] \item [[Steenrod algebra]] \end{itemize} \hypertarget{101_examples_and_applications}{}\paragraph*{{10.1 Examples and applications}}\label{101_examples_and_applications} \hypertarget{102_hopf_algebra_structure}{}\paragraph*{{10.2 Hopf algebra structure}}\label{102_hopf_algebra_structure} \begin{itemize}% \item [[Hopf algebra]] \end{itemize} \hypertarget{103_the_adams_spectral_sequence}{}\paragraph*{{10.3 The Adams spectral sequence}}\label{103_the_adams_spectral_sequence} \begin{itemize}% \item [[Adams spectral sequence]] \end{itemize} \hypertarget{chapter_iii_model_structures}{}\subsection*{{Chapter III. Model structures}}\label{chapter_iii_model_structures} \begin{itemize}% \item [[model structure on symmetric spectra]] \end{itemize} \hypertarget{1_symmetric_spectra_in_a_simplicial_category}{}\subsubsection*{{1. Symmetric spectra in a simplicial category}}\label{1_symmetric_spectra_in_a_simplicial_category} \hypertarget{2_flat_cofibrations}{}\subsubsection*{{2. Flat cofibrations}}\label{2_flat_cofibrations} \hypertarget{3_level_model_structures}{}\subsubsection*{{3. Level model structures}}\label{3_level_model_structures} \hypertarget{4_stable_model_structures}{}\subsubsection*{{4. Stable model structures}}\label{4_stable_model_structures} \begin{itemize}% \item [[model structure on symmetric spectra]] \end{itemize} \hypertarget{5_operads_and_their_algebras}{}\subsubsection*{{5. Operads and their algebras}}\label{5_operads_and_their_algebras} \begin{itemize}% \item [[operad]] \item [[algebra over an operad]] \end{itemize} \hypertarget{6_model_structures_for_algebras_over_an_operad}{}\subsubsection*{{6. Model structures for algebras over an operad}}\label{6_model_structures_for_algebras_over_an_operad} \begin{itemize}% \item [[model structure on algebras over an operad]] \end{itemize} \hypertarget{7_connective_covers_of_structured_spectra}{}\subsubsection*{{7. Connective covers of structured spectra}}\label{7_connective_covers_of_structured_spectra} \begin{itemize}% \item [[connective cover]] \end{itemize} \hypertarget{chapter_iv_module_spectra}{}\subsection*{{Chapter IV. Module spectra}}\label{chapter_iv_module_spectra} \hypertarget{appendix_a_miscellaneous_tools}{}\subsection*{{Appendix A. Miscellaneous tools}}\label{appendix_a_miscellaneous_tools} \hypertarget{model_category_theory}{}\subsubsection*{{Model category theory}}\label{model_category_theory} \begin{itemize}% \item [[model category]] \end{itemize} \hypertarget{compactly_generated_spaces}{}\subsubsection*{{Compactly generated spaces}}\label{compactly_generated_spaces} \begin{itemize}% \item [[compactly generated topological spaces]] \item [[classical model structure on topological spaces]] \end{itemize} \hypertarget{simplicial_sets}{}\subsubsection*{{Simplicial sets}}\label{simplicial_sets} \begin{itemize}% \item [[simplicial sets]] \item [[classical model structure on simplicial sets]] \end{itemize} \hypertarget{equivariant_homotopy_theory}{}\subsubsection*{{Equivariant homotopy theory}}\label{equivariant_homotopy_theory} \begin{itemize}% \item [[equivariant homotopy theory]] \end{itemize} \hypertarget{errata}{}\subsection*{{Errata}}\label{errata} \begin{itemize}% \item p. 273. the definition of [[Kronecker pairing]] (construction 6.13) is missign the application of the multiplication map \item p. 331. the second ``vertically'' should be ``horizontally'' \item p. 331. ``with coordinated'' \item p. 333. ``stable stemes'' \item p. 344. uncompiled source code ``eqrefeq-general'' etc. \end{itemize} category: reference \end{document}