\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{T-Duality and Differential K-Theory} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] This entry is about the article \begin{itemize}% \item [[Alexander Kahle]], [[Alessandro Valentino]], \emph{T-duality and Differential K-Theory}, Communications in Contemporary Mathematics, Volume 16, Issue 02, April 2014 (\href{http://arxiv.org/abs/0912.2516}{arXiv:0912.2516}) \end{itemize} on the identification of the correct description in [[differential cohomology]] ([[ordinary differential cohomology]] and [[differential K-theory]]) of [[T-duality]] or [[topological T-duality]]: [[differential T-duality]]. A review is in section 7.4 of \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], \emph{Differential K-theory. A survey} (\href{http://arxiv.org/abs/1011.6663}{arXiv:1011.6663}). \end{itemize} We try to indicate some of the content. There are two main ingredients: \begin{itemize}% \item a \hyperlink{FormalizationOfTheSetup}{formalization of the setup} \end{itemize} which proposes a refinement of the ingredients of [[topological T-duality]] to [[differential cohomology]]; and then the \begin{itemize}% \item \hyperlink{StatementOfDifferentialTduality}{statement of differential T-duality}, \end{itemize} which is the assertion that this setup naturally induces the T-duality operation as an [[isomorphism]] on [[twisted differential K-theory]]. \hypertarget{FormalizationOfTheSetup}{}\subsection*{{Formalization of the setup}}\label{FormalizationOfTheSetup} Let $\Lambda \subset \mathbb{R}^n$ be a [[lattice]] (an [[discrete group|discrete]] subgroup of the [[abelian group]] of [[real number]]s to the $n$th [[cartesian product|cartesian power]]). Write \begin{displaymath} \hat \Lambda := Hom_{Grp}(\Lambda, \mathbb{Z}) \end{displaymath} for the dual lattice and \begin{displaymath} (-,-) : \Lambda \times \hat \Lambda \to \mathbb{Z} \end{displaymath} for the canonical pairing (the [[evaluation map]]). Notice that $\hat\Lambda$ is canonically identified with the lattice of $(\mathbb{R}^n)^*$ consisting of those linear functionals $\varphi:\mathbb{R}^n\to\mathbb{R}$ such that $\varphi(\Lambda)\subseteq \mathbb{Z}$. With this identification, the canonical pairing $\Lambda \times \hat \Lambda \to \mathbb{Z}$ can be seen as the restriction to $\Lambda \times \hat \Lambda$ of the canonical pairing $\mathbb{R}^n\otimes(\mathbb{R}^n)^*\to \mathbb{R}$. The [[quotient]] $\mathbb{R}^n / \Lambda$ is a [[torus]]. A $\mathbb{R}^n/\Lambda$-[[principal bundle]] is a [[torus]]-bundle. Write $\mathcal{B}\mathbb{R}^n/\Lambda \in$ [[Top]] for the [[classifying space]] and $\mathbf{B} \mathbb{R}^n / \Lambda$ for its [[moduli space]]: the [[smooth infinity-groupoid|smooth groupoid]] [[delooping]] the [[Lie group]] $\mathbb{R}/\Lambda$. Torus bundles on a [[smooth manifold]] $X$ are classified by $H^2(X, \Lambda)$. Following the discussion at [[smooth ∞-groupoid]] we write here $\mathbf{H}(X, \mathbf{B}\mathbb{R}^n/\Lambda)$ for the [[groupoid]] of smooth torus bundles and \emph{smooth} bundle morphisms between. Write $\mathbf{H}_{conn}(X,\mathbf{B} \mathbb{R}^n /\Lambda)$ for the corresponding differential refinement to bundles with [[connection on a bundle|connection]]. For $A$ an abelian group, let $A[n]$ be the chain complex consisting of $A$ concentrated in degree $n$. Then the tensor product of [[chain complex]]es \begin{displaymath} \Lambda[2]\otimes\hat{\Lambda}[2]\cong (\Lambda\otimes\hat{\Lambda})[4] \end{displaymath} together with the map of complexes \begin{displaymath} (\Lambda \otimes \hat \Lambda)[4]\stackrel{(-,-)}{\to} \mathbb{Z}[4] \end{displaymath} induces the [[cup product]] \begin{displaymath} H^k(X, \Lambda) \times H^l(X, \hat \Lambda) \to H^{k+l}(X, \Lambda \otimes \hat \Lambda) \stackrel{(-,-)}{\to} H^{k+l}(X, \mathbb{Z}) \,. \end{displaymath} This can be refined to a pairing in [[differential cohomology]] \begin{displaymath} \bar{H}^k(X, \Lambda) \times \bar{H}^l(X, \hat \Lambda) \to \bar{H}^{k+l}(X, \Lambda \otimes \hat \Lambda) \stackrel{(-,-)}{\to} \bar{H}^{k+l}(X, \mathbb{Z}) \,. \end{displaymath} by considering the [[Deligne cohomology|Deligne complex]] of sheaves \begin{displaymath} \Lambda[2]^\infty_D:=(\Lambda\hookrightarrow C^\infty(-,\mathbb{R}^n)\xrightarrow{d_\Lambda} \Omega^1(-,\mathbb{R}^n)), \end{displaymath} where the differential $d_\Lambda$ is defined as follows: if $e_1,\dots e_n$ is a $\mathbb{Z}$-basis of $\Lambda$ and $e^1,\dots,e^n$ are the corresponding projections $e^i:\mathbb{R}^n\to \mathbb{R}$, then \begin{displaymath} d_\Lambda=(d\circ e^i)\otimes e_i \end{displaymath} (this is independent of the chosen basis). The definition of $d_\Lambda$ is clearly chosen so to have an isomorphism of complexes $(\mathbf{Z}[2]^\infty_D)^{\otimes n}\cong \Lambda[2]^\infty_D$ induced by the choice of a $\mathbb{Z}$-basis of $\Lambda$. Write $(\mathbf{B}\mathbb{R}^n/\Lambda)_{conn}$ for the smooth groupoid associated by the [[Dold-Kan correspondence]] to the Deligne complex $\Lambda[2]^\infty_D$. Then we have the morphism of smooth groupoids to a morphism \begin{displaymath} (\mathbf{B}\mathbb{R}^n/\Lambda)_{conn}\times (\mathbf{B}(\mathbb{R}^n)^*/\hat\Lambda)_{conn}\to \mathbf{B}^3\mathbf{U}(1)_{conn} \end{displaymath} induced by the composition of morphisms of complexes \begin{displaymath} \Lambda[2]^\infty_D\otimes \hat{\Lambda}[2]^\infty_D \stackrel{\cup}{\to} (\Lambda\otimes\hat\Lambda)[4]^\infty_D \stackrel{}{\to}\mathbb{Z}[4]^\infty_D, \end{displaymath} where $\cup$ is the [[Beilinson-Deligne cup-product]]. Notice that this is the one which defines [[higher dimensional Chern-Simons theory|abelian Chern-Simons theories]]. The higher [[holonomy]] of the [[circle n-bundle with connection |circle 3-bundle with connection]] appearing here is the [[action functional]] of torus-[[Chern-Simons theory]]. Differential T-duality pairs form the homotopy fiber of the morphism $(\mathbf{B}\mathbb{R}^n/\Lambda)_{conn}\times (\mathbf{B}(\mathbb{R}^n)^*/\hat\Lambda)_{conn}\to \mathbf{B}^3\mathbf{U}(1)_{conn}$ It relates differential cohomological structures on $\mathbb{R}^n / \Lambda$-principal bundles with that on certain dual $(\mathbb{R}^n)^* /\hat \Lambda$-principal bundles. \begin{defn} \label{DifferentialTDualityPair}\hypertarget{DifferentialTDualityPair}{} A \textbf{differential T-duality pair} is \begin{itemize}% \item a [[smooth manifold]] $X$; \item a $\mathbb{R}^n/\Lambda$-[[principal bundle]] $P \to X$ with connection $\theta$ and a $\mathbb{R}^n / \hat \Lambda$-principal bundle $\hat P \to X$ with connection $\hat \theta$; such that the underlying topological class of the [[cup product]] $(P, \theta) \cup (\hat P, \hat \theta )$ is trivial; \item a choice of trivialization \begin{displaymath} \sigma : (0,C) \stackrel{\simeq}{\to} (P, \theta) \cup (\hat P , \hat \theta) \,. \end{displaymath} \end{itemize} \end{defn} This is (\hyperlink{KahleValentino}{KahleValentino, def. 2.1}). It is the evident differential generalization of the description in [[topological T-duality]] that appears for instance around (7.11) of (\hyperlink{BunkeSchick}{BunkeSchick}). \begin{remark} \label{}\hypertarget{}{} We may refine this naturally to a \textbf{[[2-groupoid]] of twisted T-duality pairs} $TDualityPairs(X)_{conn}$, the [[homotopy pullback]] \begin{displaymath} \itexarray{ TDualityPairs(X)_{conn} &\stackrel{tw}{\to}& H^4_{diff}(X) \\ \downarrow &\swArrow_{\sigma}& \downarrow \\ \mathbf{H}(X, \mathbf{B}\mathbb{R}^n/\Lambda \times \mathbf{B} \mathbb{R}^n/\hat \Lambda) &\stackrel{}{\to}& \mathbf{H}(X, \mathbf{B}^3 U(1))_{conn} } \,. \end{displaymath} This is itself an example of [[twisted cohomology]] (as discussed there). (We use here the notation at \emph{[[schreiber:differential cohomology in a cohesive topos]]} .) The differential T-duality pairs of def. \ref{DifferentialTDualityPair} are those elements $(P,\hat P, \sigma) \in TDualityPairs(X)_{conn}$ for which the [[twisted cohomology|twist]] $tw(P,\hat P, \sigma) \in H^4_{diff}(X)$ in [[ordinary differential cohomology]] has an underlying trivial [[circle n-bundle|circle 3-bundle]]. We could restrict the homotopy pullback to these, but it seems natural to include the full collection of twists. (Notice that these ``twist'' here are not the twists in ``twisted K-theory'', rather we are observing that already the notion of T-duality pairs itself is an example of cocycles in twisted cohomology in the general sense.) Notice that the above analogous to the notion of \emph{[[differential string structure]]s in $StringBund(X)_{tw,conn}$ over $X$: as discussed in detail there, this is the [[homotopy pullback]]} \begin{displaymath} \itexarray{ StringBund(X)_{tw,conn} &\to& H^4_{diff}(X) \\ \downarrow &\swArrow_{\sigma}& \downarrow \\ \mathbf{H}(X, \mathbf{B}Spin \times \mathbf{B} SU) &\stackrel{\frac{1}{2}\hat \mathbf{p}_1 - \frac{1}{46}\hat \mathbf{c}}{\to}& \mathbf{H}(X, \mathbf{B}^3 U(1))_{conn} } \,. \end{displaymath} In particular the [[looping and delooping|looping]] $TString$ of the [[homotopy fiber]] \begin{displaymath} \itexarray{ \mathbf{B}TString &\stackrel{}{\to}& \ast \\ \downarrow &\swArrow& \downarrow \\ \mathbf{B}\mathbb{R}^n/\Lambda \times \mathbf{B} \mathbb{R}^n/\hat \Lambda &\stackrel{\langle - \cup -\rangle}{\to}& \mathbf{B}^3 U(1))_{conn} } \end{displaymath} has the right to be called the [[T-duality 2-group]] or similar. The [[principal 2-bundles]] for this are [[T-folds]] (see there). \end{remark} \begin{defn} \label{}\hypertarget{}{} Write $\mathbf{H}_{diff,2}(X, \mathbf{B}^3 U(1))$ for a [[3-groupoid]] whose objects are cocycles in [[ordinary differential cohomology]] in degree 4, but whose morphisms need not preserve connections and are instead such that the [[automorphism]] [[2-groupoid]] of the 0-object is that of circle 2-bundles with connection $\mathbf{H}_{diff}(X, \mathbf{B}^2 U(1))$. \end{defn} A 1-groupoid truncation of this idea is the object denoted $\mathcal{H}^p(X)$ in \hyperlink{KahleValentino}{KahleValentino, A.2}. \begin{remark} \label{}\hypertarget{}{} In terms of the notion of [[differential function complex]] we should simply set \begin{displaymath} \mathbf{H}_{diff,2}(X, \mathbf{B}^3 U(1)) := filt_1 ( H \mathbb{Z}_4)^X \,. \end{displaymath} (Notice the $filt_1$ instead of $filt_0$. ) By \href{http://ncatlab.org/nlab/show/differential%20function%20complex#homotopy_groups_24}{this proposition} this has the right properties. \end{remark} \begin{lemma} \label{}\hypertarget{}{} The choice $\sigma$ of the trivialization of the cup product of the two torus bundles induces canonically elments in degree 3 ordinary differential cohomology (two [[circle n-bundle with connection|circle 2-bundles with connection]]) on $P$ and on $\hat P$, respectively, whose pullbacks to the [[fiber product]] $P \times_X \hat P$ are equivalent there. \end{lemma} This is (\hyperlink{KahleValentino}{KahleValentino, 2.2, 2.3}), where an explicit construction of the classes and their equivalence is given. \begin{remark} \label{}\hypertarget{}{} This is a special case of the general statement about extensions of higher bundles discussed : Let $A \to \mathbf{B} \mathbb{R}^n / \Lambda \times \mathbf{B} \mathbb{R}^n / \hat \Lambda$ be the [[homotopy fiber]] of the pairing class $\mathbf{B} \mathbb{R}^n / \Lambda \times \mathbf{B} \mathbb{R}^n / \hat \Lambda \to \mathbf{B}^3 U(1)$. This leads to the long [[fiber sequence]] (as discussed there) \begin{displaymath} \cdots \to \mathbf{B}^2 U(1) \to A \to \mathbf{B} \mathbb{R}^n / \Lambda \times \mathbf{B} \mathbb{R}^n / \hat \Lambda \to \mathbf{B}^3 U(1) \end{displaymath} The characteristic map $X \to \mathbf{B} \mathbb{R}^n / \Lambda \times \mathbf{B} \mathbb{R}^n / \hat \Lambda$ of a pair of torus bundles $P , \hat P \to X$ factors through $A$ precisely if these form a T-duality pair. Such a factorization induces a $\mathbf{B} U(1)$-[[principal 2-bundle]] on the [[fiber product]] $P \times_X \hat P$. This follows from the following [[pasting diagram]] of [[homotopy pullback]]s \begin{displaymath} \itexarray{ P \times_X \hat P &\stackrel{\tilde \tau}{\to}& \mathbf{B}^2 U(1) &\to& * \\ \downarrow && \downarrow && \downarrow \\ X &\to& A & \to & \mathbf{B} \mathbb{R}^n / \Lambda \times \mathbf{B} \mathbb{R}^n / \hat \Lambda } \,. \end{displaymath} The $\tilde \tau$ here is the class on the fiber product in question. Notice that in the top left we indeed have $P \times_X \hat P$: the bottom left homotopy pullback of the product coefficients is equivalently given by the following pasting composite of homotopy pullbacks \begin{displaymath} \itexarray{ && && P \times_X \hat P \\ && & \swarrow && \searrow \\ && P &&&& \hat P \\ & \swarrow && \searrow && \swarrow && \searrow \\ * && && X && && * \\ & \searrow && \swarrow && \searrow && \swarrow \\ && \mathbf{B}\mathbb{R}^n / \Lambda && && \mathbf{B}\mathbb{R}^n / \hat \Lambda } \,. \end{displaymath} Notice also that this is again directly analogous to the situation for [[string structure]]s: as discussed there, a string structure on $X$ induces a $\mathbf{B}U(1)$-2-bundle on the total space of a $Spin$-principal bundle over $X$. \end{remark} \hypertarget{StatementOfDifferentialTDuality}{}\subsection*{{Statement of differential T-duality}}\label{StatementOfDifferentialTDuality} (\ldots{}) category: reference \end{document}