\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{T. Streicher - a model of type theory in simplicial sets - a brief introduction to Voevodsky' s homotopy type theory} This entry is about the article \href{http://www.mathematik.tu-darmstadt.de/~streicher/sstt.pdf}{T. Streicher - a model of type theory in simplicial sets - a brief introduction to Voevodsky' s homotopy type theory}. \begin{quote}% The aim of this note is to describe in an accessible way how simplicial sets organize into a model of Martin-L\"o{}f type theory. Moreover, we explain Voevodsky's Univalence Axiom which holds in this model and implements the idea that isomorphic types are identical \end{quote} The topos $sSet=:H$ contains a [[natural-numbers object]]. $H$ is equipped with the [[model structure]] $(C,W,F)$ (\ldots{}). Families of types are defined to be [[Kan fibrations]]. The class $F$ of Kan fibrations has the following properties: \begin{itemize}% \item It is closed under composition, pullback along arbitrary morphisms and contains all isomorphisms. \item It is closed under $\Pi$; i.e. if $a:A\to I$ and $b:B\to A$ are in $F$ then $\Pi_a(b)$ is in $F$. \end{itemize} \hypertarget{identity_on_}{}\subsection*{{Identity on $X$}}\label{identity_on_} Let $X\in H$ be an object. Let \begin{displaymath} X\xrightarrow{r_X}Id(X)\xrightarrow{p_X}X\times X \end{displaymath} be a factorization of the diagonal $\delta_X : X \xrightarrow{}X\times X$ into an acyclic cofibration $r_X\in C\cap W$ followed by a fibration $p_X\in F$. We interpret the fibration $p_X$ as \begin{displaymath} x,y:X\vdash I_X(x,y) \end{displaymath} Analogous, for a Kan fibration $f:A\to I$ we factor the diagonal $\delta_f:A\to A\times_I A$ of $f$ in this way. Now the problem ist that such a factorization is not stable under pullback. To solve this problem we introduce the notion of \emph{type theoretic universe} / \emph{Martin-L\"o{}f universe.} \hypertarget{universes_in__and_lifting_of_grothendieck_universes_into_presheaf_toposes}{}\subsection*{{Universes in $sSet$ and lifting of Grothendieck universes into presheaf toposes}}\label{universes_in__and_lifting_of_grothendieck_universes_into_presheaf_toposes} A \emph{universe in $sSet$} is defined to be a Kan fibration $p_U:\tilde U\to U$. Such a universe in $sSet$ may be obtained by lifting a Grothendieck universe $\mathcal{U}\in Set$ to a type theoretic universe $p_U:\tilde U\to U$ in a presheaf topos $\hat C=Set^{C^{op}}$ on some site $C$ by exponentiating $\mathcal{U}$ with the component-wise dependent sum and then forming the generalized universal bundle. To be more precise this is done by defining \begin{equation} U(I)=\mathcal{U}^{(C/I)^{op}} \label{1}\end{equation} \begin{equation} U(\alpha)=\mathcal{U}^{\Sigma_\alpha^{op}} \label{2}\end{equation} where for a morphism $\alpha$ the \emph{dependent sum} ${\Sigma_\alpha^{op}}=\alpha\circ (-)$ is given by postcomposition with $\alpha$. The idea behind this is that $\mathcal{U}^{(C/I)^{op}}$ is quivalent to the full subcategory of $\hat C/Y(I)$ on those maps whose fibers are $\mathcal{U}$-small. The presheaf $\tilde U$ is defined as \begin{equation} \tilde U(I)=\{\langle A,a\rangle | A\in U(I)\,\text{ and }\,a\in A(id_I)\} \label{3}\end{equation} and \begin{equation} \tilde U(\alpha)(\langle A,a\rangle)=\langle U(\alpha)(A),A(\alpha\to id_I)(a)\rangle \label{4}\end{equation} for $\alpha:J\to I$ in $C$. The map $p_U:\tilde U\to U$ sends $\langle A,a\rangle$ to $A$. $p_U$ is generic for maps with $\mathcal{U}$-small fibers. These maps are up to isomorphism precisely those which can be obtained as pullback of $p_U$ along some morphism in $\hat C$. For $C=\Delta$ we adapt this idea in such a way that $p_U$ is generic for Kan fibrations with $\mathcal{U}$-small fibers. We redefine in this case \begin{equation} U([n])=\{A\in \mathcal{U}^{\Delta/[n])^{op}} | P_A\,\text{ is a Kan fibration }\,\} \label{formula5}\end{equation} where $P_A:Elts(A)\to \Delta[n]$ is obtained from $A$ by the Grothendieck construction: For $A:\Delta[n]\to U$ it is the pullback $(P_A:Elts(A)\to \Delta[n]):=A^* p_U$ of $p_U$ along $A$. For morphisms $\alpha$ in $\Delta$ we define $U(\alpha)$ as above since Kan fibrations are stable under pullbacks. $\tilde U$ and $p_U$ are defined as above in (3) and (4) but with the modified $U$, formula (5). \begin{theorem} \label{1}\hypertarget{1}{} The simplicial set $U$, formula (5) is a Kan complex \end{theorem} \begin{proof} V. Voevodsky some draft papers and Coq files - www.math.ias.edu/$\sim$vladimir/Site3/Univalent Foundations.html \end{proof} \begin{theorem} \label{2}\hypertarget{2}{} For the simplicial set $U$, formula (5), the morphism $p_U:\tilde U\to U$ is universal for morphisms with $\mathcal{U}$-small fibers in that every morphisms with $\mathcal{U}$-small fibers arises as a pullback of $p_U$ along some morphism in $H$. \end{theorem} \begin{proof} $p_U$ is a Kan fibration since if \begin{displaymath} \itexarray{ \Lambda_k[n]&\xrightarrow{a}&\tilde U \\ \downarrow^{i_k^n}&&\downarrow^{p_U} \\\Delta[n]&\xrightarrow{A}&U } \end{displaymath} is commutative, the pullback of $p_U$ along $A$ is by definition the Kan fibration $P_A:Elts(A)\to \Delta[n]$. This gives a lift $\Delta[n]\to Elts(A)$ which composed with the projection $Elts(A)\to \tilde U$ provides the searched diagonal filler $\Delta[n]\to \tilde U$. $p_U$ is universal since a Kan fibration $a:A\to I$ with $\mathcal{U}$-small fibers is the pullback of $p_U$ along the morphism $A:I\to U$ sending $x\in I([n])$ to an $\mathcal{U}$-valued presheaf on $\Delta/[n]$ which is isomorphic to $x^* a$ by the Grothendieck construction. \begin{displaymath} \itexarray{ A_x&\to&A&\to&\tilde U \\ \downarrow^{x^* a}&&\downarrow^a&&\downarrow^{p_U} \\ * &\xrightarrow{x}&I&\xrightarrow{A}&U } \end{displaymath} \end{proof} \begin{cor} \label{}\hypertarget{}{} The type theoretic universe $p_U:\tilde U\to U$, Theorem \ref{2}, is closed under dependent sums, products and contains the natural-numbers object $N:=\Delta(\mathbb{N})$. \end{cor} \hypertarget{identity_types_in_the_lifted_grothendieck_universe_}{}\subsection*{{Identity types in the lifted Grothendieck universe $U$}}\label{identity_types_in_the_lifted_grothendieck_universe_} We consider the factorization $\tilde U\xrightarrow{r_{\tilde U}}Id_{\tilde U}\xrightarrow{p_{\tilde U}}\tilde U\times_U \tilde U$ of the diagonal $\delta_{p_{\tilde U}}$ of $p_{\tilde U}$ into an acyclic cofibration $r_{\tilde U}\in C\cap W$ followed by a fibration $p_{\tilde U}\in F$. \hypertarget{interpretation_of_the_eliminator_for_identity_types}{}\subsubsection*{{Interpretation of the eliminator for identity types}}\label{interpretation_of_the_eliminator_for_identity_types} For interpreting the eliminator $J$ for $Id$-types we pull back the whole situation along the projection \begin{displaymath} \Gamma:=(C:Id_{\tilde U}\xrightarrow{U}U^* U, d:\Pi_U(r^*_{\tilde U} C)) \end{displaymath} (\ldots{}) \hypertarget{voevodsky_s_univalence_axiom}{}\subsection*{{Voevodsky' s univalence axiom}}\label{voevodsky_s_univalence_axiom} Now we will see that Voevodsky's univalence axiom holds in the model described above. Fix the following notation $iscontr(X :Set) := (\Sigma_x :X )(\Pi_y:Y ) Id_X (x, y)$ $hfiber(X, Y :Set)(f :X \to Y )(y:Y ) := (\Sigma_x :X ) Id_Y (f (x), y)$ $isweq(X, Y :Set)(f :X \to Y ) := (\Pi_y:Y ) iscontr(hfiber(X, Y , f , y))$ $Weq(X, Y :Set) := (\Sigma_f :X \to Y ) isweq(X, Y , f )$ The eliminator $J$ for identity types induces a canonical map \begin{displaymath} eqweq(X,Y:Set)isweq(eqweq(X,Y)) \end{displaymath} The univalence axiom claims then that all maps $eqweq(X,Y)$ are themselves weak equivalences, i.e. \begin{defn} \label{}\hypertarget{}{} \begin{displaymath} UnivAx:(\Pi X, Y:Set)isweq(eqweq(X,Y)) \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The univalence axiom implies the \emph{function extensionality principle}: for $f,g:X\to Y$ we have \begin{displaymath} (\Pi x:X)Id_Y(fx,gx))\to Id_{X\to Y}(f,g) \end{displaymath} \end{remark} Even without the univalence axiom we have the following result corresponding to the fact that in $sSet$ a morphism to a Kan complex is a weak equivalence iff it is a homotopy equivalence. \begin{remark} \label{}\hypertarget{}{} $isweq(X,Y)(f)$ is equivalent to \begin{displaymath} isiso(X,Y)(f):=(\Sigma g :Y\to X)((\Pi x:X)Id_X(g(fx),x))\times ((\Pi y:Y)Id_Y(f(gy),y)) \end{displaymath} \end{remark} \end{document}