\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Tannaka duality for geometric stacks} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{setup}{Setup}\dotfill \pageref*{setup} \linebreak \noindent\hyperlink{ringed_toposes}{Ringed toposes}\dotfill \pageref*{ringed_toposes} \linebreak \noindent\hyperlink{abelian_tensor_categories}{Abelian tensor categories}\dotfill \pageref*{abelian_tensor_categories} \linebreak \noindent\hyperlink{GeometricStack}{Geometric stacks}\dotfill \pageref*{GeometricStack} \linebreak \noindent\hyperlink{tannaka_duality_for_geometric_stacks}{Tannaka duality for geometric stacks}\dotfill \pageref*{tannaka_duality_for_geometric_stacks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Under mild conditions, a given [[site]] $C \subset T Alg^{op}$ of formal duals of [[algebra over a Lawvere theory|algebras over an algebraic theory]] admits [[Isbell duality]] exhibited by an [[adjunction]] \begin{displaymath} (\mathcal{O} \dashv Spec) : (T Alg^{\Delta})^{op} \stackrel{\overset{\mathcal{O}}{\leftarrow}}{\underset{Spec}{\to}} Sh_{(\infty,1)}(C) \end{displaymath} as described at [[function algebras on ∞-stacks]] Here $\mathcal{O}(X)$ is an $(\infty,1)$-algebra of functions on $X$. This entry describes for certain [[algebraic stacks]] an analog of this situation where the 1-algebras are replaced by 2-algebras in the form of commutative algebra objects in the [[2-category]] of [[abelian categories]]: abelian [[symmetric monoidal categories]], and where the function algebras $\mathcal{O}(X)$ are replaced with category $QC(X)$ of [[quasicoherent sheaves]]. The replacement of the 1-algebra $\mathcal{O}(X)$ by the 2-algebra $QC(X)$ is the starting point for what is called [[derived noncommutative geometry]]. \hypertarget{setup}{}\subsection*{{Setup}}\label{setup} \hypertarget{ringed_toposes}{}\subsubsection*{{Ringed toposes}}\label{ringed_toposes} All [[topos]]es that we consider are [[Grothendieck topos]]es. A [[ringed topos]] $(S, \mathcal{O}_S)$ is a topos $S$ equipped with a ring object $\mathcal{O}_S$ -- a [[sheaf]] of rings -- called the [[structure sheaf]] -- on whatever [[site]] $S$ is the [[category of sheaves]] on. We write $\mathcal{O}_S Mod$ for the category of [[module]]s in $S$ (sheaves of modules) over $\mathcal{O}_S$. We write $RngdTopos$ for the category of ringed toposes. For $X$ a [[scheme]] or more generally an [[algebraic stack]], write $Sh(X_{et})$ for its [[little etale topos]]. \begin{udef} A ringed topos $(S,\mathcal{O}_S)$ is a \textbf{[[locally ringed topos]]} with respect to the [[étale topology]] if for every object $U \in S$ and every family $\{Spec R_i \to Spec \mathcal{O}_S(U)\}$ of [[étale morphism]]s such that \begin{displaymath} \mathcal{O}_S(U) \to \prod_i R_i \end{displaymath} is [[faithfully flat]], there exists morphisms $E_i \to E$ in $S$ and factorizations $\mathcal{O}_S(U) \to R_i \to \mathcal{O}_S(E_i)$ such that \begin{displaymath} \coprod_i E_i \to E \end{displaymath} is an [[epimorphism]]. \end{udef} \begin{uprop} If $S$ has [[point of a topos|enough points]] then $(S, \mathcal{O}_S)$ is local for the \'e{}tale topology precisely if the [[stalk]] $\mathcal{O}_S(x)$ at every [[point of a topos|point]] $x : Set \to S$ is a strictly [[Henselian ring|Henselian]] [[local ring]]. \end{uprop} This is (\hyperlink{Lurie}{Lurie, remark 4.4}). \begin{uprop} \begin{itemize}% \item The [[little étale topos]] $Sh(X_{et})$ of a [[Deligne-Mumford stack]] $X$ is locally ringed with respect to the \'e{}tale topology. \end{itemize} \end{uprop} \hypertarget{abelian_tensor_categories}{}\subsubsection*{{Abelian tensor categories}}\label{abelian_tensor_categories} \begin{udef} An \textbf{abelian tensor category} (for the purposes of the present discusission) is a [[symmetric monoidal category]] $(C, \otimes)$ such that \begin{itemize}% \item $C$ is an [[abelian category]]; \item for every $x \in C$ the functor $(-) \otimes x : C\to C$ is additive and right-[[exact functor|exact]]: it commutes with finite [[colimit]]s. \end{itemize} A \textbf{complete abelian tensor category} is an abelian tensor category such that \begin{itemize}% \item it satisfies the axiom AB5 at [[additive and abelian categories]]; \item $(-) \otimes x$ commutes with \emph{all small} colimits. (equivalently, we have a [[closed monoidal category]]). \end{itemize} An abelian tensor category is called \textbf{tame} if for any [[short exact sequence]] \begin{displaymath} 0 \to M'\to M \to M''\to 0 \end{displaymath} with $M''$ a \emph{flat object} (such that $x \mapsto x \otimes M''$ is an [[exact functor]]) and any $N \in C$ also the induced sequence \begin{displaymath} 0 \to M'\otimes N \to M\otimes N \to M''\otimes N \to 0 \end{displaymath} is exact. \end{udef} This appears as (\hyperlink{Lurie}{Lurie, def. 5.2}) together with the paragraph below remark 5.3. \begin{udef} For $C,D$ two \hyperlink{AbelianTensorCategory}{complete abelian tensor categories} write \begin{displaymath} Func_\otimes(C,D) \subset Func(C,D) \end{displaymath} for the [[core]] of the [[subcategory]] of the [[functor category]] on those [[functor]]s that \begin{itemize}% \item are [[symmetric monoidal functor]]s; \item commute with all small [[colimit]]s (which implies they are [[additive functor|additive]] and [[exact functor|right exact]]) \item preserve flat objects and short exact sequences whose last object is flat. \end{itemize} Write \begin{displaymath} TCAbTens \end{displaymath} for the ([[strict 2-category|strict]]) [[(2,1)-category]] of \hyperlink{AbelianTensorCategory}{tame complete abelian tensor categories} with hom-[[groupoid]]s given by this $Func_\otimes$. \end{udef} This appears as (\hyperlink{Lurie}{Lurie, def 5.9}) together with the following remarks. \begin{ulemma} For $k$ a [[ring]], write $k Mod$ for its [[abelian category|abelian]] [[symmetric monoidal category]] of [[module]]s Let $(S,\mathcal{O}_S)$ be a [[ringed topos]]. Then \begin{displaymath} \mathcal{O}_S Mod \end{displaymath} (the category of sheaves of $\mathcal{O}_S$-[[module]]s) is a tame \hyperlink{AbelianTensorCategory}{complete abelian tensor category}. \end{ulemma} This is (\hyperlink{Lurie}{Lurie, example 5.7}). \begin{ulemma} For $X$ an [[algebraic stack]], write \begin{displaymath} QC(X) \end{displaymath} for its category [[quasicoherent sheaves]]. This is a \hyperlink{AbelianTensorCategory}{complete abelian tensor category} \end{ulemma} \begin{ulemma} If $X$ is a Noetherian geometric stack, then $QC(X)$ is the category of [[ind-object]]s of its full [[subcategory]] $Coh(X) \subset QC(X)$ of [[coherent sheaves]] \begin{displaymath} QC(X) \simeq Ind(Coh(X)) \,. \end{displaymath} \end{ulemma} This appears as (\hyperlink{Lurie}{Lurie, lemma 3.9}). \hypertarget{GeometricStack}{}\subsubsection*{{Geometric stacks}}\label{GeometricStack} \begin{udef} A \textbf{[[geometric stack]]} is \begin{itemize}% \item an [[algebraic stack]] $X$ over $Spec \mathbb{Z}$ \item that is quasi-compact, in particular there is an [[epimorphism]] $Spec A \to X$; \item with affine and [[representable morphism of stacks|representable]] diagonal $X \to X \times X$. \end{itemize} \end{udef} \begin{uprop} \begin{itemize}% \item A quasicompact [[separated scheme]] is a geometric stack. \item The classifying stack of a [[smooth scheme|smooth]] affine [[group object|group]] [[scheme]] is a geometric stack. \end{itemize} \end{uprop} The geometricity condition on an algebraic stack implies that there are ``enough'' [[quasicoherent sheaves]] on it, as formalized by the following statement. \begin{utheorem} If $X$ is a \hyperlink{geometricStack}{geometric stack} then the [[bounded chain complex|bounded-below]] [[derived category]] of [[quasicoherent sheaves]] on $X$ is naturally [[equivalence of categories|equivalent]] to the full [[subcategory]] of the left-bounded derived category of smooth-[[etale site|etale]] $\mathcal{O}_X$-modules whose [[chain cohomology]] sheaves are quasicoherent. \end{utheorem} This is (\hyperlink{Lurie}{Lurie, theorem 3.8}). \hypertarget{tannaka_duality_for_geometric_stacks}{}\subsection*{{Tannaka duality for geometric stacks}}\label{tannaka_duality_for_geometric_stacks} \begin{utheorem} Let $X$ be a \hyperlink{GeometricStack}{geometric stack}. Then for every ring $A$ there is an [[equivalence of categories]] \begin{displaymath} RngdTopos(Sh((Spec A)_{et}),Sh(X_{et})) \simeq Hom_\otimes(QC(X), A Mod) \end{displaymath} hence (by the [[2-Yoneda lemma]]) \begin{displaymath} X(Spec A) \simeq Hom_\otimes(QC(X), QC(Spec A)) \,. \end{displaymath} More generally, for $(S, \mathcal{O}_S)$ any \hyperlink{localWRTEtaleTopology}{etale-locally} [[ringed topos]], we have \begin{displaymath} RngdTopos(S,Sh(X_{et})) \simeq Hom_\otimes(QC(X), \mathcal{O}_S Mod) \,. \end{displaymath} \end{utheorem} This is (\hyperlink{Lurie}{Lurie, theorem 5.11}) in view of (\hyperlink{Lurie}{Lurie, remark 4.5}). \begin{uremark} It follows that forming [[quasicoherent sheaves]] constitutes a [[full and faithful (infinity,1)-functor|full and faithful (2,1)-functor]] \begin{displaymath} QC : GeomStacks \to TCAbTens^{op} \end{displaymath} from geometric stacks to \hyperlink{TCAbTens}{tame complete abelian tensor categories}. This statement justifies thinking of $QC(X)$ as being the ``2-algebra'' of functions on $X$. This perspective is the basis for [[derived noncommutative geometry]]. \end{uremark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[analytification]] \item [[2-algebraic geometry]] \item [[spectrum of a tensor triangulated category]] \item [[prime spectrum of a symmetric monoidal stable (∞,1)-category]] \item [[Tannaka duality for Lie groupoids]] \item [[Bondal-Orlov reconstruction theorem]] \item [[2-ring]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The above material is taken from \begin{itemize}% \item [[Jacob Lurie]], \emph{Tannaka duality for geometric stacks}, (\href{http://arxiv.org/abs/math/0412266}{arXiv:math.AG/0412266}) \end{itemize} The generalization to geometric stacks in the context of [[Spectral Schemes]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \end{itemize} Related discussion is in \begin{itemize}% \item [[Martin Brandenburg]], [[Alexandru Chirvasitu]], \emph{Tensor functors between categories of quasi-coherent sheaves} (\href{http://arxiv.org/abs/1202.5147}{arXiv:abs/1202.5147}) \end{itemize} \end{document}