\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{The Geometry of Physics - An Introduction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] This page provides a hyperlinked index for the book \begin{itemize}% \item [[Theodore Frankel]], \emph{The Geometry of Physics - An introduction} Cambridge University Press, 1997, 2004, 2012 (\href{https://doi.org/10.1017/CBO9781139061377}{doi:10.1017/CBO9781139061377}, \href{http://www.math.ucsd.edu/~tfrankel/}{website} with errata and preface for 3rd edition) \end{itemize} on methods of [[differential geometry]] and their meaning and use in [[physics]], especially [[gravity]] and [[gauge theory]]. Among the nice aspects of the book are \begin{itemize}% \item it discusses [[pseudoforms]] on top of ordinary [[differential forms]], instead of just assuming that all [[manifolds]] are [[orientation|oriented]] as often done --- and what's more, it explains the physical meaning of this! (But it still uses [[Riemannian metric|metrics]] more than necessary.) \end{itemize} Related books are \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} \item [[Chris Isham]], \emph{[[Modern Differential Geometry for Physicists]]} \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{i_manifolds_tensors_and_exterior_forms}{I Manifolds, Tensors and Exterior Forms}\dotfill \pageref*{i_manifolds_tensors_and_exterior_forms} \linebreak \noindent\hyperlink{1_manifolds_and_vector_fields}{1 Manifolds and Vector Fields}\dotfill \pageref*{1_manifolds_and_vector_fields} \linebreak \noindent\hyperlink{11_submanifolds_of_euclidean_space}{1.1 Submanifolds of Euclidean space}\dotfill \pageref*{11_submanifolds_of_euclidean_space} \linebreak \noindent\hyperlink{11a_submanifolds_of_}{1.1a Submanifolds of $\mathbb{R}^N$}\dotfill \pageref*{11a_submanifolds_of_} \linebreak \noindent\hyperlink{11b_the_geometry_of_jacobian_matrices_the_differential}{1.1b The Geometry of Jacobian Matrices: The ``Differential''}\dotfill \pageref*{11b_the_geometry_of_jacobian_matrices_the_differential} \linebreak \noindent\hyperlink{11c_the_main_theorem_on_submanifolds_of_}{1.1c The main theorem on submanifolds of $\mathbb{R}^N$}\dotfill \pageref*{11c_the_main_theorem_on_submanifolds_of_} \linebreak \noindent\hyperlink{11d_a_nontrivial_example_the_configuration_space_of_a_rigid_body}{1.1d A Nontrivial Example: The Configuration Space of a Rigid Body}\dotfill \pageref*{11d_a_nontrivial_example_the_configuration_space_of_a_rigid_body} \linebreak \noindent\hyperlink{12_manifolds}{1.2 Manifolds}\dotfill \pageref*{12_manifolds} \linebreak \noindent\hyperlink{13_tangent_vectors_and_mappings}{1.3 Tangent Vectors and Mappings}\dotfill \pageref*{13_tangent_vectors_and_mappings} \linebreak \noindent\hyperlink{14_vector_fields_and_flows}{1.4 Vector Fields and Flows}\dotfill \pageref*{14_vector_fields_and_flows} \linebreak \noindent\hyperlink{2_tensors_and_exterior_forms}{2 Tensors and Exterior Forms}\dotfill \pageref*{2_tensors_and_exterior_forms} \linebreak \noindent\hyperlink{21_covectors_and_riemannian_metrics}{2.1 Covectors and Riemannian Metrics}\dotfill \pageref*{21_covectors_and_riemannian_metrics} \linebreak \noindent\hyperlink{22_the_tangent_bundle}{2.2 The Tangent Bundle}\dotfill \pageref*{22_the_tangent_bundle} \linebreak \noindent\hyperlink{23_the_cotangent_bundle_and_phase_space}{2.3 The Cotangent Bundle and Phase Space}\dotfill \pageref*{23_the_cotangent_bundle_and_phase_space} \linebreak \noindent\hyperlink{24_tensors}{2.4 Tensors}\dotfill \pageref*{24_tensors} \linebreak \noindent\hyperlink{25_the_grassmann_or_exterior_algebra}{2.5 The Grassmann or Exterior Algebra}\dotfill \pageref*{25_the_grassmann_or_exterior_algebra} \linebreak \noindent\hyperlink{26_exterior_differentiation}{2.6 Exterior Differentiation}\dotfill \pageref*{26_exterior_differentiation} \linebreak \noindent\hyperlink{27_pullbacks}{2.7 Pull-Backs}\dotfill \pageref*{27_pullbacks} \linebreak \noindent\hyperlink{28_orientation_and_pseudoforms}{2.8 Orientation and Pseudoforms}\dotfill \pageref*{28_orientation_and_pseudoforms} \linebreak \noindent\hyperlink{29_interior_products_and_vector_analysis}{2.9 Interior Products and Vector Analysis}\dotfill \pageref*{29_interior_products_and_vector_analysis} \linebreak \noindent\hyperlink{210_dictionary}{2.10 Dictionary}\dotfill \pageref*{210_dictionary} \linebreak \noindent\hyperlink{3_integration_of_differential_forms}{3 Integration of Differential Forms}\dotfill \pageref*{3_integration_of_differential_forms} \linebreak \noindent\hyperlink{31_integration_over_a_parameterized_subset}{3.1 Integration over a Parameterized Subset}\dotfill \pageref*{31_integration_over_a_parameterized_subset} \linebreak \noindent\hyperlink{32_integration_over_manifolds_with_boundary}{3.2 Integration over Manifolds with Boundary}\dotfill \pageref*{32_integration_over_manifolds_with_boundary} \linebreak \noindent\hyperlink{33_stokes_theorem}{3.3 Stokes' Theorem}\dotfill \pageref*{33_stokes_theorem} \linebreak \noindent\hyperlink{34_integration_of_pseudoforms}{3.4 Integration of Pseudoforms}\dotfill \pageref*{34_integration_of_pseudoforms} \linebreak \noindent\hyperlink{35_maxwells_equations}{3.5 Maxwell's Equations}\dotfill \pageref*{35_maxwells_equations} \linebreak \noindent\hyperlink{4_the_lie_derivative}{4 The Lie Derivative}\dotfill \pageref*{4_the_lie_derivative} \linebreak \noindent\hyperlink{41_the_lie_derivative_of_a_vector_field}{4.1 The Lie Derivative of a Vector Field}\dotfill \pageref*{41_the_lie_derivative_of_a_vector_field} \linebreak \noindent\hyperlink{42_the_lie_derivative_of_a_form}{4.2 The Lie Derivative of a Form}\dotfill \pageref*{42_the_lie_derivative_of_a_form} \linebreak \noindent\hyperlink{43_differentiation_of_integrals}{4.3 Differentiation of Integrals}\dotfill \pageref*{43_differentiation_of_integrals} \linebreak \noindent\hyperlink{44_a_problem_set_on_hamiltonian_mechanics}{4.4 A Problem Set on Hamiltonian Mechanics}\dotfill \pageref*{44_a_problem_set_on_hamiltonian_mechanics} \linebreak \noindent\hyperlink{5_the_poincar_lemma_and_potentials}{5 The Poincar\'e{} Lemma and Potentials}\dotfill \pageref*{5_the_poincar_lemma_and_potentials} \linebreak \noindent\hyperlink{6_holonomic_and_nonholonomic_constraints}{6 Holonomic and Nonholonomic Constraints}\dotfill \pageref*{6_holonomic_and_nonholonomic_constraints} \linebreak \noindent\hyperlink{ii_geometry_and_topology}{II Geometry and Topology}\dotfill \pageref*{ii_geometry_and_topology} \linebreak \noindent\hyperlink{7__and_minkowski_space}{7 $\mathbb{R}^3$ and Minkowski Space}\dotfill \pageref*{7__and_minkowski_space} \linebreak \noindent\hyperlink{71_curvature_and_special_relativity}{7.1 Curvature and Special Relativity}\dotfill \pageref*{71_curvature_and_special_relativity} \linebreak \noindent\hyperlink{72_electromagnetism_in_minkowski_space}{7.2 Electromagnetism in Minkowski Space}\dotfill \pageref*{72_electromagnetism_in_minkowski_space} \linebreak \noindent\hyperlink{8_the_geometry_of_surfaces_in_}{8 The Geometry of Surfaces in $\mathbb{R}^3$}\dotfill \pageref*{8_the_geometry_of_surfaces_in_} \linebreak \noindent\hyperlink{81_the_first_and_second_fundamental_form}{8.1 The First and Second Fundamental Form}\dotfill \pageref*{81_the_first_and_second_fundamental_form} \linebreak \noindent\hyperlink{82_gaussian_and_mean_curvature}{8.2 Gaussian and Mean Curvature}\dotfill \pageref*{82_gaussian_and_mean_curvature} \linebreak \noindent\hyperlink{83_the_brouwer_degree_of_a_map_a_problem_set}{8.3 The Brouwer Degree of a Map: A Problem Set}\dotfill \pageref*{83_the_brouwer_degree_of_a_map_a_problem_set} \linebreak \noindent\hyperlink{84_area_mean_curvature_and_soap_bubbles}{8.4 Area, Mean Curvature, and Soap Bubbles}\dotfill \pageref*{84_area_mean_curvature_and_soap_bubbles} \linebreak \noindent\hyperlink{85_gauss_theorema_egregium}{8.5 Gauss' \emph{Theorema Egregium}}\dotfill \pageref*{85_gauss_theorema_egregium} \linebreak \noindent\hyperlink{86_geodesics}{8.6 Geodesics}\dotfill \pageref*{86_geodesics} \linebreak \noindent\hyperlink{87_the_parallel_displacement_of_levicivita}{8.7 The Parallel Displacement of Levi-Civita}\dotfill \pageref*{87_the_parallel_displacement_of_levicivita} \linebreak \noindent\hyperlink{9_covariant_differentiation_and_curvature}{9 Covariant Differentiation and Curvature}\dotfill \pageref*{9_covariant_differentiation_and_curvature} \linebreak \noindent\hyperlink{91_covariant_differentiation}{9.1 Covariant Differentiation}\dotfill \pageref*{91_covariant_differentiation} \linebreak \noindent\hyperlink{92_the_riemannian_connection}{9.2 The Riemannian Connection}\dotfill \pageref*{92_the_riemannian_connection} \linebreak \noindent\hyperlink{93_cartans_exterior_covariant_differential}{9.3 Cartan's Exterior Covariant Differential}\dotfill \pageref*{93_cartans_exterior_covariant_differential} \linebreak \noindent\hyperlink{94_change_of_basis_anf_gauge_transformations}{9.4 Change of Basis anf Gauge Transformations}\dotfill \pageref*{94_change_of_basis_anf_gauge_transformations} \linebreak \noindent\hyperlink{95_the_curvature_forms_in_a_riemannian_manifold}{9.5 The Curvature Forms in a Riemannian Manifold}\dotfill \pageref*{95_the_curvature_forms_in_a_riemannian_manifold} \linebreak \noindent\hyperlink{96_parallel_displacement_and_curvature_on_a_surface}{9.6 Parallel Displacement and Curvature on a Surface}\dotfill \pageref*{96_parallel_displacement_and_curvature_on_a_surface} \linebreak \noindent\hyperlink{97_riemanns_theorem_and_horizontal_distribution}{9.7 Riemann's Theorem and Horizontal Distribution}\dotfill \pageref*{97_riemanns_theorem_and_horizontal_distribution} \linebreak \noindent\hyperlink{10_geodesics}{10 Geodesics}\dotfill \pageref*{10_geodesics} \linebreak \noindent\hyperlink{101_geodesics_and_jacobian_fields}{10.1 Geodesics and Jacobian Fields}\dotfill \pageref*{101_geodesics_and_jacobian_fields} \linebreak \noindent\hyperlink{102_variational_principles_in_mechanics}{10.2 Variational Principles in Mechanics}\dotfill \pageref*{102_variational_principles_in_mechanics} \linebreak \noindent\hyperlink{103_geodesics_spiders_and_the_universe}{10.3 Geodesics, Spiders, and the Universe}\dotfill \pageref*{103_geodesics_spiders_and_the_universe} \linebreak \noindent\hyperlink{11_relativity_tensors_and_curvature}{11 Relativity, Tensors, and Curvature}\dotfill \pageref*{11_relativity_tensors_and_curvature} \linebreak \noindent\hyperlink{111_heuristics_of_einsteins_theory}{11.1 Heuristic's of Einstein's Theory}\dotfill \pageref*{111_heuristics_of_einsteins_theory} \linebreak \noindent\hyperlink{112_tensor_analysis}{11.2 Tensor analysis}\dotfill \pageref*{112_tensor_analysis} \linebreak \noindent\hyperlink{113_hilberts_action_principle}{11.3 Hilbert's Action Principle}\dotfill \pageref*{113_hilberts_action_principle} \linebreak \noindent\hyperlink{114_the_second_fundamental_form_in_the_riemannian_case}{11.4 The Second Fundamental Form in the Riemannian Case}\dotfill \pageref*{114_the_second_fundamental_form_in_the_riemannian_case} \linebreak \noindent\hyperlink{115_the_geometry_of_einsteins_equations}{11.5 The Geometry of Einstein's Equations}\dotfill \pageref*{115_the_geometry_of_einsteins_equations} \linebreak \noindent\hyperlink{12_curvature_and_topology_synges_theorem}{12 Curvature and Topology: Synge's Theorem}\dotfill \pageref*{12_curvature_and_topology_synges_theorem} \linebreak \noindent\hyperlink{13_betti_numbers_and_de_rhams_theorem}{13 Betti Numbers and De Rham's Theorem}\dotfill \pageref*{13_betti_numbers_and_de_rhams_theorem} \linebreak \noindent\hyperlink{131_singular_chains_and_their_boundaries}{13.1 Singular Chains and Their Boundaries}\dotfill \pageref*{131_singular_chains_and_their_boundaries} \linebreak \noindent\hyperlink{132_the_singular_homology_groups}{13.2 The Singular Homology Groups}\dotfill \pageref*{132_the_singular_homology_groups} \linebreak \noindent\hyperlink{133_homology_groups_of_familiar_manifolds}{13.3 Homology Groups of Familiar Manifolds}\dotfill \pageref*{133_homology_groups_of_familiar_manifolds} \linebreak \noindent\hyperlink{134_de_rhams_theorem}{13.4 De Rham's Theorem}\dotfill \pageref*{134_de_rhams_theorem} \linebreak \noindent\hyperlink{14_harmonic_forms}{14 Harmonic Forms}\dotfill \pageref*{14_harmonic_forms} \linebreak \noindent\hyperlink{141_the_hodge_operators}{14.1 The Hodge Operators}\dotfill \pageref*{141_the_hodge_operators} \linebreak \noindent\hyperlink{142_harmonic_forms}{14.2 Harmonic Forms}\dotfill \pageref*{142_harmonic_forms} \linebreak \noindent\hyperlink{143_boundary_values_relative_homology_and_morse_theory}{14.3 Boundary Values, Relative Homology, and Morse Theory}\dotfill \pageref*{143_boundary_values_relative_homology_and_morse_theory} \linebreak \noindent\hyperlink{ii_lie_groups_bundles_and_chern_forms}{II Lie Groups, Bundles and Chern Forms}\dotfill \pageref*{ii_lie_groups_bundles_and_chern_forms} \linebreak \noindent\hyperlink{15_lie_groups}{15 Lie Groups}\dotfill \pageref*{15_lie_groups} \linebreak \noindent\hyperlink{151_lie_groups_invariant_vector_fields_and_forms}{15.1 Lie Groups, Invariant Vector Fields and Forms}\dotfill \pageref*{151_lie_groups_invariant_vector_fields_and_forms} \linebreak \noindent\hyperlink{152_one_parameter_subgroups}{15.2 One Parameter Subgroups}\dotfill \pageref*{152_one_parameter_subgroups} \linebreak \noindent\hyperlink{153_the_lie_algebra_of_a_lie_group}{15.3 The Lie Algebra of a Lie Group}\dotfill \pageref*{153_the_lie_algebra_of_a_lie_group} \linebreak \noindent\hyperlink{154_subgroups_and_subalgebras}{15.4 Subgroups and Subalgebras}\dotfill \pageref*{154_subgroups_and_subalgebras} \linebreak \noindent\hyperlink{16_vector_bundles_in_geometry_and_physics}{16 Vector Bundles in Geometry and Physics}\dotfill \pageref*{16_vector_bundles_in_geometry_and_physics} \linebreak \noindent\hyperlink{161_vector_bundles}{16.1 Vector Bundles}\dotfill \pageref*{161_vector_bundles} \linebreak \noindent\hyperlink{162_poincars_theorem_and_the_euler_characteristic}{16.2 Poincar\'e{}`s Theorem and the Euler Characteristic}\dotfill \pageref*{162_poincars_theorem_and_the_euler_characteristic} \linebreak \noindent\hyperlink{163_connections_in_a_vector_bundle}{16.3 Connections in a Vector Bundle}\dotfill \pageref*{163_connections_in_a_vector_bundle} \linebreak \noindent\hyperlink{164_the_electromagnetic_connection}{16.4 The Electromagnetic Connection}\dotfill \pageref*{164_the_electromagnetic_connection} \linebreak \noindent\hyperlink{fiber_bundles_gaussbonnet_and_topological_quantization}{Fiber Bundles, Gauss-Bonnet, and Topological Quantization}\dotfill \pageref*{fiber_bundles_gaussbonnet_and_topological_quantization} \linebreak \noindent\hyperlink{171_fiber_bundles_and_principal_bundles}{17.1 Fiber Bundles and Principal Bundles}\dotfill \pageref*{171_fiber_bundles_and_principal_bundles} \linebreak \noindent\hyperlink{172_coset_spaces}{17.2 Coset Spaces}\dotfill \pageref*{172_coset_spaces} \linebreak \noindent\hyperlink{173_cherns_proof_of_the_gaussbonnetpoincar_theorem}{17.3 Chern's Proof of the Gauss-Bonnet-Poincar\'e{} Theorem}\dotfill \pageref*{173_cherns_proof_of_the_gaussbonnetpoincar_theorem} \linebreak \noindent\hyperlink{174_line_bundles_topological_quantization_and_berry_phase}{17.4 Line Bundles, Topological Quantization, and Berry Phase}\dotfill \pageref*{174_line_bundles_topological_quantization_and_berry_phase} \linebreak \noindent\hyperlink{18_connections_and_associated_bundles}{18 Connections and Associated Bundles}\dotfill \pageref*{18_connections_and_associated_bundles} \linebreak \noindent\hyperlink{181_forms_with_values_in_a_lie_algebra}{18.1 Forms with Values in a Lie Algebra}\dotfill \pageref*{181_forms_with_values_in_a_lie_algebra} \linebreak \noindent\hyperlink{182_associated_bundles_and_connections}{18.2 Associated Bundles and Connections}\dotfill \pageref*{182_associated_bundles_and_connections} \linebreak \noindent\hyperlink{183_form_sections_of_a_vector_bundle_curvature}{18.3 $r$-Form Sections of a Vector Bundle: Curvature}\dotfill \pageref*{183_form_sections_of_a_vector_bundle_curvature} \linebreak \noindent\hyperlink{19_the_dirac_equation}{19 The Dirac Equation}\dotfill \pageref*{19_the_dirac_equation} \linebreak \noindent\hyperlink{191_the_groups__and_}{19.1 The Groups $SO(3)$ and $SU(2)$}\dotfill \pageref*{191_the_groups__and_} \linebreak \noindent\hyperlink{192_hamilton_clifford_and_dirac}{19.2 Hamilton, Clifford, and Dirac}\dotfill \pageref*{192_hamilton_clifford_and_dirac} \linebreak \noindent\hyperlink{193_the_dirac_algebra}{19.3 The Dirac Algebra}\dotfill \pageref*{193_the_dirac_algebra} \linebreak \noindent\hyperlink{194_the_dirac_operator_in_minkowski_space}{19.4 The Dirac Operator in Minkowski Space}\dotfill \pageref*{194_the_dirac_operator_in_minkowski_space} \linebreak \noindent\hyperlink{195_the_dirac_operator_in_curved_spacetime}{19.5 The Dirac Operator in Curved Space-Time}\dotfill \pageref*{195_the_dirac_operator_in_curved_spacetime} \linebreak \noindent\hyperlink{20_yangmills_fields}{20 Yang-Mills Fields}\dotfill \pageref*{20_yangmills_fields} \linebreak \noindent\hyperlink{201_noethers_theorem_for_internal_symmetries}{20.1 Noether's Theorem for Internal Symmetries}\dotfill \pageref*{201_noethers_theorem_for_internal_symmetries} \linebreak \noindent\hyperlink{202_weyls_gauge_invariance_revisited}{20.2 Weyl's Gauge Invariance Revisited}\dotfill \pageref*{202_weyls_gauge_invariance_revisited} \linebreak \noindent\hyperlink{203_the_yangmills_nucleon}{20.3 The Yang-Mills Nucleon}\dotfill \pageref*{203_the_yangmills_nucleon} \linebreak \noindent\hyperlink{204_compact_groups_and_yangmills_action}{20.4 Compact Groups and Yang-Mills Action}\dotfill \pageref*{204_compact_groups_and_yangmills_action} \linebreak \noindent\hyperlink{205_the_yangmills_equation}{20.5 The Yang-Mills Equation}\dotfill \pageref*{205_the_yangmills_equation} \linebreak \noindent\hyperlink{206_the_yangmills_instanton}{20.6 The Yang-Mills Instanton}\dotfill \pageref*{206_the_yangmills_instanton} \linebreak \noindent\hyperlink{21_betti_numbers_and_covering_spaces}{21 Betti Numbers and Covering Spaces}\dotfill \pageref*{21_betti_numbers_and_covering_spaces} \linebreak \noindent\hyperlink{211_biinvariant_forms_on_compact_groups}{21.1 Bi-invariant Forms on Compact Groups}\dotfill \pageref*{211_biinvariant_forms_on_compact_groups} \linebreak \noindent\hyperlink{212_the_fundamental_group_and_covering_spaces}{21.2 The Fundamental Group and Covering Spaces}\dotfill \pageref*{212_the_fundamental_group_and_covering_spaces} \linebreak \noindent\hyperlink{213_the_theorem_of_sb_myers_a_problem_set}{21.3 The Theorem of S.B. Myers: A Problem Set}\dotfill \pageref*{213_the_theorem_of_sb_myers_a_problem_set} \linebreak \noindent\hyperlink{214_the_geometry_of_a_lie_group}{21.4 The Geometry of a Lie Group}\dotfill \pageref*{214_the_geometry_of_a_lie_group} \linebreak \noindent\hyperlink{22_chern_forms_and_homotopy_groups}{22 Chern Forms and Homotopy Groups}\dotfill \pageref*{22_chern_forms_and_homotopy_groups} \linebreak \noindent\hyperlink{221_chernforms_and_winding_numbers}{22.1 Chern-Forms and Winding Numbers}\dotfill \pageref*{221_chernforms_and_winding_numbers} \linebreak \noindent\hyperlink{222_homotopies_and_extensions}{22.2 Homotopies and Extensions}\dotfill \pageref*{222_homotopies_and_extensions} \linebreak \noindent\hyperlink{223_the_higher_homotopy_groups_}{22.3 The Higher Homotopy Groups $\pi_k(M)$}\dotfill \pageref*{223_the_higher_homotopy_groups_} \linebreak \noindent\hyperlink{224_some_computations_of_homotopy_groups}{22.4 Some Computations of Homotopy Groups}\dotfill \pageref*{224_some_computations_of_homotopy_groups} \linebreak \noindent\hyperlink{225_chern_forms_as_obstructions}{22.5 Chern Forms as Obstructions}\dotfill \pageref*{225_chern_forms_as_obstructions} \linebreak \noindent\hyperlink{appendix_a_forms_in_continuum_mechanics}{Appendix A. Forms in Continuum Mechanics}\dotfill \pageref*{appendix_a_forms_in_continuum_mechanics} \linebreak \noindent\hyperlink{appendix_b_harmonic_chains_and_kirchhoffs_circuit_law}{Appendix B. Harmonic Chains and Kirchhoff's Circuit Law}\dotfill \pageref*{appendix_b_harmonic_chains_and_kirchhoffs_circuit_law} \linebreak \noindent\hyperlink{appendix_c_symmetries_quarks_and_meson_masses}{Appendix C. Symmetries, Quarks, and Meson Masses}\dotfill \pageref*{appendix_c_symmetries_quarks_and_meson_masses} \linebreak \noindent\hyperlink{appendix_d_representations_and_hyperelastic_bodies}{Appendix D. Representations and Hyperelastic Bodies}\dotfill \pageref*{appendix_d_representations_and_hyperelastic_bodies} \linebreak \noindent\hyperlink{appendix_e_orbits_and_morsebott_theory_in_compact_lie_groups}{Appendix E. Orbits and Morse-Bott Theory in Compact Lie Groups}\dotfill \pageref*{appendix_e_orbits_and_morsebott_theory_in_compact_lie_groups} \linebreak \hypertarget{i_manifolds_tensors_and_exterior_forms}{}\subsection*{{I Manifolds, Tensors and Exterior Forms}}\label{i_manifolds_tensors_and_exterior_forms} \hypertarget{1_manifolds_and_vector_fields}{}\subsubsection*{{1 Manifolds and Vector Fields}}\label{1_manifolds_and_vector_fields} \hypertarget{11_submanifolds_of_euclidean_space}{}\paragraph*{{1.1 Submanifolds of Euclidean space}}\label{11_submanifolds_of_euclidean_space} \hypertarget{11a_submanifolds_of_}{}\paragraph*{{1.1a Submanifolds of $\mathbb{R}^N$}}\label{11a_submanifolds_of_} \begin{itemize}% \item [[Cartesian space]] \item [[submanifold]] \end{itemize} \hypertarget{11b_the_geometry_of_jacobian_matrices_the_differential}{}\paragraph*{{1.1b The Geometry of Jacobian Matrices: The ``Differential''}}\label{11b_the_geometry_of_jacobian_matrices_the_differential} \hypertarget{11c_the_main_theorem_on_submanifolds_of_}{}\paragraph*{{1.1c The main theorem on submanifolds of $\mathbb{R}^N$}}\label{11c_the_main_theorem_on_submanifolds_of_} \begin{itemize}% \item [[Whitney embedding theorem]] \end{itemize} \hypertarget{11d_a_nontrivial_example_the_configuration_space_of_a_rigid_body}{}\paragraph*{{1.1d A Nontrivial Example: The Configuration Space of a Rigid Body}}\label{11d_a_nontrivial_example_the_configuration_space_of_a_rigid_body} \begin{itemize}% \item [[rigid body]] \end{itemize} \hypertarget{12_manifolds}{}\paragraph*{{1.2 Manifolds}}\label{12_manifolds} \begin{itemize}% \item [[manifold]] \item [[smooth manifold]] \end{itemize} \hypertarget{13_tangent_vectors_and_mappings}{}\paragraph*{{1.3 Tangent Vectors and Mappings}}\label{13_tangent_vectors_and_mappings} \begin{itemize}% \item [[tangent bundle]] \item [[coordinates]] \end{itemize} \hypertarget{14_vector_fields_and_flows}{}\paragraph*{{1.4 Vector Fields and Flows}}\label{14_vector_fields_and_flows} \begin{itemize}% \item [[vector field]] \item [[flow]] \end{itemize} \hypertarget{2_tensors_and_exterior_forms}{}\subsubsection*{{2 Tensors and Exterior Forms}}\label{2_tensors_and_exterior_forms} \hypertarget{21_covectors_and_riemannian_metrics}{}\paragraph*{{2.1 Covectors and Riemannian Metrics}}\label{21_covectors_and_riemannian_metrics} \begin{itemize}% \item [[differential form]] \item [[Riemannian metric]] \end{itemize} \hypertarget{22_the_tangent_bundle}{}\paragraph*{{2.2 The Tangent Bundle}}\label{22_the_tangent_bundle} \begin{itemize}% \item [[tangent bundle]] \end{itemize} \hypertarget{23_the_cotangent_bundle_and_phase_space}{}\paragraph*{{2.3 The Cotangent Bundle and Phase Space}}\label{23_the_cotangent_bundle_and_phase_space} \begin{itemize}% \item [[cotangent bundle]] \item [[phase space]] \end{itemize} \hypertarget{24_tensors}{}\paragraph*{{2.4 Tensors}}\label{24_tensors} \begin{itemize}% \item [[tensor]] \end{itemize} \hypertarget{25_the_grassmann_or_exterior_algebra}{}\paragraph*{{2.5 The Grassmann or Exterior Algebra}}\label{25_the_grassmann_or_exterior_algebra} \begin{itemize}% \item [[Grassmann algebra]] \item [[exterior algebra]] \end{itemize} \hypertarget{26_exterior_differentiation}{}\paragraph*{{2.6 Exterior Differentiation}}\label{26_exterior_differentiation} \begin{itemize}% \item [[de Rham differential]] \end{itemize} \hypertarget{27_pullbacks}{}\paragraph*{{2.7 Pull-Backs}}\label{27_pullbacks} \begin{itemize}% \item [[pullback of a differential form]] \end{itemize} \hypertarget{28_orientation_and_pseudoforms}{}\paragraph*{{2.8 Orientation and Pseudoforms}}\label{28_orientation_and_pseudoforms} \begin{itemize}% \item [[orientation]] \item [[pseudoform]] \end{itemize} \hypertarget{29_interior_products_and_vector_analysis}{}\paragraph*{{2.9 Interior Products and Vector Analysis}}\label{29_interior_products_and_vector_analysis} \hypertarget{210_dictionary}{}\paragraph*{{2.10 Dictionary}}\label{210_dictionary} \hypertarget{3_integration_of_differential_forms}{}\subsubsection*{{3 Integration of Differential Forms}}\label{3_integration_of_differential_forms} \begin{itemize}% \item [[integration]] \item [[integration of differential forms]] \end{itemize} \hypertarget{31_integration_over_a_parameterized_subset}{}\paragraph*{{3.1 Integration over a Parameterized Subset}}\label{31_integration_over_a_parameterized_subset} \hypertarget{32_integration_over_manifolds_with_boundary}{}\paragraph*{{3.2 Integration over Manifolds with Boundary}}\label{32_integration_over_manifolds_with_boundary} \hypertarget{33_stokes_theorem}{}\paragraph*{{3.3 Stokes' Theorem}}\label{33_stokes_theorem} \begin{itemize}% \item [[Stokes' theorem]] \end{itemize} \hypertarget{34_integration_of_pseudoforms}{}\paragraph*{{3.4 Integration of Pseudoforms}}\label{34_integration_of_pseudoforms} \hypertarget{35_maxwells_equations}{}\paragraph*{{3.5 Maxwell's Equations}}\label{35_maxwells_equations} \begin{itemize}% \item [[Maxwell's equations]] \end{itemize} \hypertarget{4_the_lie_derivative}{}\subsubsection*{{4 The Lie Derivative}}\label{4_the_lie_derivative} \begin{itemize}% \item [[Lie derivative]] \end{itemize} \hypertarget{41_the_lie_derivative_of_a_vector_field}{}\paragraph*{{4.1 The Lie Derivative of a Vector Field}}\label{41_the_lie_derivative_of_a_vector_field} \hypertarget{42_the_lie_derivative_of_a_form}{}\paragraph*{{4.2 The Lie Derivative of a Form}}\label{42_the_lie_derivative_of_a_form} \hypertarget{43_differentiation_of_integrals}{}\paragraph*{{4.3 Differentiation of Integrals}}\label{43_differentiation_of_integrals} \hypertarget{44_a_problem_set_on_hamiltonian_mechanics}{}\paragraph*{{4.4 A Problem Set on Hamiltonian Mechanics}}\label{44_a_problem_set_on_hamiltonian_mechanics} \begin{itemize}% \item [[Hamiltonian mechanics]] \end{itemize} \hypertarget{5_the_poincar_lemma_and_potentials}{}\subsubsection*{{5 The Poincar\'e{} Lemma and Potentials}}\label{5_the_poincar_lemma_and_potentials} \begin{itemize}% \item [[electromagnetic potential]] \end{itemize} \hypertarget{6_holonomic_and_nonholonomic_constraints}{}\subsubsection*{{6 Holonomic and Nonholonomic Constraints}}\label{6_holonomic_and_nonholonomic_constraints} \hypertarget{ii_geometry_and_topology}{}\subsection*{{II Geometry and Topology}}\label{ii_geometry_and_topology} \hypertarget{7__and_minkowski_space}{}\subsubsection*{{7 $\mathbb{R}^3$ and Minkowski Space}}\label{7__and_minkowski_space} \hypertarget{71_curvature_and_special_relativity}{}\paragraph*{{7.1 Curvature and Special Relativity}}\label{71_curvature_and_special_relativity} \begin{itemize}% \item [[curvature]] \item [[special relativity]] \end{itemize} \hypertarget{72_electromagnetism_in_minkowski_space}{}\paragraph*{{7.2 Electromagnetism in Minkowski Space}}\label{72_electromagnetism_in_minkowski_space} \begin{itemize}% \item [[electromagnetism]] \end{itemize} \hypertarget{8_the_geometry_of_surfaces_in_}{}\subsubsection*{{8 The Geometry of Surfaces in $\mathbb{R}^3$}}\label{8_the_geometry_of_surfaces_in_} \hypertarget{81_the_first_and_second_fundamental_form}{}\paragraph*{{8.1 The First and Second Fundamental Form}}\label{81_the_first_and_second_fundamental_form} \hypertarget{82_gaussian_and_mean_curvature}{}\paragraph*{{8.2 Gaussian and Mean Curvature}}\label{82_gaussian_and_mean_curvature} \hypertarget{83_the_brouwer_degree_of_a_map_a_problem_set}{}\paragraph*{{8.3 The Brouwer Degree of a Map: A Problem Set}}\label{83_the_brouwer_degree_of_a_map_a_problem_set} \hypertarget{84_area_mean_curvature_and_soap_bubbles}{}\paragraph*{{8.4 Area, Mean Curvature, and Soap Bubbles}}\label{84_area_mean_curvature_and_soap_bubbles} \begin{itemize}% \item [[area]] \item [[mean curvature]] \end{itemize} \hypertarget{85_gauss_theorema_egregium}{}\paragraph*{{8.5 Gauss' \emph{Theorema Egregium}}}\label{85_gauss_theorema_egregium} \begin{itemize}% \item [[theorema egregium]] \end{itemize} \hypertarget{86_geodesics}{}\paragraph*{{8.6 Geodesics}}\label{86_geodesics} \begin{itemize}% \item [[geodesic]] \end{itemize} \hypertarget{87_the_parallel_displacement_of_levicivita}{}\paragraph*{{8.7 The Parallel Displacement of Levi-Civita}}\label{87_the_parallel_displacement_of_levicivita} \begin{itemize}% \item [[parallel transport]] \item [[Levi-Civita connection]] \end{itemize} \hypertarget{9_covariant_differentiation_and_curvature}{}\subsubsection*{{9 Covariant Differentiation and Curvature}}\label{9_covariant_differentiation_and_curvature} \hypertarget{91_covariant_differentiation}{}\paragraph*{{9.1 Covariant Differentiation}}\label{91_covariant_differentiation} \begin{itemize}% \item [[covariant derivative]] \end{itemize} \hypertarget{92_the_riemannian_connection}{}\paragraph*{{9.2 The Riemannian Connection}}\label{92_the_riemannian_connection} \begin{itemize}% \item [[Levi-Civita connection]] \end{itemize} \hypertarget{93_cartans_exterior_covariant_differential}{}\paragraph*{{9.3 Cartan's Exterior Covariant Differential}}\label{93_cartans_exterior_covariant_differential} \hypertarget{94_change_of_basis_anf_gauge_transformations}{}\paragraph*{{9.4 Change of Basis anf Gauge Transformations}}\label{94_change_of_basis_anf_gauge_transformations} \begin{itemize}% \item [[basis]] \item [[gauge transformation]] \end{itemize} \hypertarget{95_the_curvature_forms_in_a_riemannian_manifold}{}\paragraph*{{9.5 The Curvature Forms in a Riemannian Manifold}}\label{95_the_curvature_forms_in_a_riemannian_manifold} \hypertarget{96_parallel_displacement_and_curvature_on_a_surface}{}\paragraph*{{9.6 Parallel Displacement and Curvature on a Surface}}\label{96_parallel_displacement_and_curvature_on_a_surface} \hypertarget{97_riemanns_theorem_and_horizontal_distribution}{}\paragraph*{{9.7 Riemann's Theorem and Horizontal Distribution}}\label{97_riemanns_theorem_and_horizontal_distribution} \hypertarget{10_geodesics}{}\subsubsection*{{10 Geodesics}}\label{10_geodesics} \hypertarget{101_geodesics_and_jacobian_fields}{}\paragraph*{{10.1 Geodesics and Jacobian Fields}}\label{101_geodesics_and_jacobian_fields} \begin{itemize}% \item [[geodesic]] \end{itemize} \hypertarget{102_variational_principles_in_mechanics}{}\paragraph*{{10.2 Variational Principles in Mechanics}}\label{102_variational_principles_in_mechanics} \begin{itemize}% \item [[variational calculus]] \item [[Euler-Lagrange equations]] \end{itemize} \hypertarget{103_geodesics_spiders_and_the_universe}{}\paragraph*{{10.3 Geodesics, Spiders, and the Universe}}\label{103_geodesics_spiders_and_the_universe} \begin{itemize}% \item [[observable universe]] \end{itemize} \hypertarget{11_relativity_tensors_and_curvature}{}\subsubsection*{{11 Relativity, Tensors, and Curvature}}\label{11_relativity_tensors_and_curvature} \hypertarget{111_heuristics_of_einsteins_theory}{}\paragraph*{{11.1 Heuristic's of Einstein's Theory}}\label{111_heuristics_of_einsteins_theory} \begin{itemize}% \item [[general covariance]] \end{itemize} \hypertarget{112_tensor_analysis}{}\paragraph*{{11.2 Tensor analysis}}\label{112_tensor_analysis} \hypertarget{113_hilberts_action_principle}{}\paragraph*{{11.3 Hilbert's Action Principle}}\label{113_hilberts_action_principle} \begin{itemize}% \item [[Einstein-Hilbert action]] \end{itemize} \hypertarget{114_the_second_fundamental_form_in_the_riemannian_case}{}\paragraph*{{11.4 The Second Fundamental Form in the Riemannian Case}}\label{114_the_second_fundamental_form_in_the_riemannian_case} \hypertarget{115_the_geometry_of_einsteins_equations}{}\paragraph*{{11.5 The Geometry of Einstein's Equations}}\label{115_the_geometry_of_einsteins_equations} \begin{itemize}% \item [[Einstein's equations]] \end{itemize} \hypertarget{12_curvature_and_topology_synges_theorem}{}\subsubsection*{{12 Curvature and Topology: Synge's Theorem}}\label{12_curvature_and_topology_synges_theorem} \hypertarget{13_betti_numbers_and_de_rhams_theorem}{}\subsubsection*{{13 Betti Numbers and De Rham's Theorem}}\label{13_betti_numbers_and_de_rhams_theorem} \hypertarget{131_singular_chains_and_their_boundaries}{}\paragraph*{{13.1 Singular Chains and Their Boundaries}}\label{131_singular_chains_and_their_boundaries} \begin{itemize}% \item [[singular chain complex]] \end{itemize} \hypertarget{132_the_singular_homology_groups}{}\paragraph*{{13.2 The Singular Homology Groups}}\label{132_the_singular_homology_groups} \begin{itemize}% \item [[singular homology]] \end{itemize} \hypertarget{133_homology_groups_of_familiar_manifolds}{}\paragraph*{{13.3 Homology Groups of Familiar Manifolds}}\label{133_homology_groups_of_familiar_manifolds} \begin{itemize}% \item [[Betti number]] \end{itemize} \hypertarget{134_de_rhams_theorem}{}\paragraph*{{13.4 De Rham's Theorem}}\label{134_de_rhams_theorem} \begin{itemize}% \item [[de Rham theorem]] \end{itemize} \hypertarget{14_harmonic_forms}{}\subsubsection*{{14 Harmonic Forms}}\label{14_harmonic_forms} \hypertarget{141_the_hodge_operators}{}\paragraph*{{14.1 The Hodge Operators}}\label{141_the_hodge_operators} \begin{itemize}% \item [[Hodge star operator]] \end{itemize} \hypertarget{142_harmonic_forms}{}\paragraph*{{14.2 Harmonic Forms}}\label{142_harmonic_forms} \begin{itemize}% \item [[harmonic differential form]] \end{itemize} \hypertarget{143_boundary_values_relative_homology_and_morse_theory}{}\paragraph*{{14.3 Boundary Values, Relative Homology, and Morse Theory}}\label{143_boundary_values_relative_homology_and_morse_theory} \begin{itemize}% \item [[relative homology]] \item [[Morse theory]] \end{itemize} \hypertarget{ii_lie_groups_bundles_and_chern_forms}{}\subsection*{{II Lie Groups, Bundles and Chern Forms}}\label{ii_lie_groups_bundles_and_chern_forms} \hypertarget{15_lie_groups}{}\subsubsection*{{15 Lie Groups}}\label{15_lie_groups} \hypertarget{151_lie_groups_invariant_vector_fields_and_forms}{}\paragraph*{{15.1 Lie Groups, Invariant Vector Fields and Forms}}\label{151_lie_groups_invariant_vector_fields_and_forms} \begin{itemize}% \item [[Lie group]] \item [[Maurer-Cartan form]] \end{itemize} \hypertarget{152_one_parameter_subgroups}{}\paragraph*{{15.2 One Parameter Subgroups}}\label{152_one_parameter_subgroups} \hypertarget{153_the_lie_algebra_of_a_lie_group}{}\paragraph*{{15.3 The Lie Algebra of a Lie Group}}\label{153_the_lie_algebra_of_a_lie_group} \begin{itemize}% \item [[Lie algebra]] \item [[Lie theory]] \end{itemize} \hypertarget{154_subgroups_and_subalgebras}{}\paragraph*{{15.4 Subgroups and Subalgebras}}\label{154_subgroups_and_subalgebras} \begin{itemize}% \item [[subgroup]] \end{itemize} \hypertarget{16_vector_bundles_in_geometry_and_physics}{}\subsubsection*{{16 Vector Bundles in Geometry and Physics}}\label{16_vector_bundles_in_geometry_and_physics} \hypertarget{161_vector_bundles}{}\paragraph*{{16.1 Vector Bundles}}\label{161_vector_bundles} \begin{itemize}% \item [[vector bundle]] \end{itemize} \hypertarget{162_poincars_theorem_and_the_euler_characteristic}{}\paragraph*{{16.2 Poincar\'e{}`s Theorem and the Euler Characteristic}}\label{162_poincars_theorem_and_the_euler_characteristic} \begin{itemize}% \item [[Euler characteristic]] \end{itemize} \hypertarget{163_connections_in_a_vector_bundle}{}\paragraph*{{16.3 Connections in a Vector Bundle}}\label{163_connections_in_a_vector_bundle} \begin{itemize}% \item [[connection on a vector bundle]] \end{itemize} \hypertarget{164_the_electromagnetic_connection}{}\paragraph*{{16.4 The Electromagnetic Connection}}\label{164_the_electromagnetic_connection} \begin{itemize}% \item [[line bundle with connection]] \end{itemize} \hypertarget{fiber_bundles_gaussbonnet_and_topological_quantization}{}\subsubsection*{{Fiber Bundles, Gauss-Bonnet, and Topological Quantization}}\label{fiber_bundles_gaussbonnet_and_topological_quantization} \hypertarget{171_fiber_bundles_and_principal_bundles}{}\paragraph*{{17.1 Fiber Bundles and Principal Bundles}}\label{171_fiber_bundles_and_principal_bundles} \begin{itemize}% \item [[fiber bundle]] \item [[principal bundle]] \end{itemize} \hypertarget{172_coset_spaces}{}\paragraph*{{17.2 Coset Spaces}}\label{172_coset_spaces} \begin{itemize}% \item [[coset]] \end{itemize} \hypertarget{173_cherns_proof_of_the_gaussbonnetpoincar_theorem}{}\paragraph*{{17.3 Chern's Proof of the Gauss-Bonnet-Poincar\'e{} Theorem}}\label{173_cherns_proof_of_the_gaussbonnetpoincar_theorem} \begin{itemize}% \item [[Gauss-Bonnet theorem]] \end{itemize} \hypertarget{174_line_bundles_topological_quantization_and_berry_phase}{}\paragraph*{{17.4 Line Bundles, Topological Quantization, and Berry Phase}}\label{174_line_bundles_topological_quantization_and_berry_phase} \begin{itemize}% \item [[line bundle]] \item [[Berry phase]] \end{itemize} \hypertarget{18_connections_and_associated_bundles}{}\subsubsection*{{18 Connections and Associated Bundles}}\label{18_connections_and_associated_bundles} \hypertarget{181_forms_with_values_in_a_lie_algebra}{}\paragraph*{{18.1 Forms with Values in a Lie Algebra}}\label{181_forms_with_values_in_a_lie_algebra} \begin{itemize}% \item [[Lie algebra valued 1-form]] \end{itemize} \hypertarget{182_associated_bundles_and_connections}{}\paragraph*{{18.2 Associated Bundles and Connections}}\label{182_associated_bundles_and_connections} \begin{itemize}% \item [[associated bundle]] \item [[connection on a bundle]] \end{itemize} \hypertarget{183_form_sections_of_a_vector_bundle_curvature}{}\paragraph*{{18.3 $r$-Form Sections of a Vector Bundle: Curvature}}\label{183_form_sections_of_a_vector_bundle_curvature} \begin{itemize}% \item [[section]] \item [[curvature]] \end{itemize} \hypertarget{19_the_dirac_equation}{}\subsubsection*{{19 The Dirac Equation}}\label{19_the_dirac_equation} \hypertarget{191_the_groups__and_}{}\paragraph*{{19.1 The Groups $SO(3)$ and $SU(2)$}}\label{191_the_groups__and_} \begin{itemize}% \item [[special orthogonal group]] \item [[special unitary group]] \end{itemize} \hypertarget{192_hamilton_clifford_and_dirac}{}\paragraph*{{19.2 Hamilton, Clifford, and Dirac}}\label{192_hamilton_clifford_and_dirac} \begin{itemize}% \item [[Clifford algebra]] \item [[spinor]] \end{itemize} \hypertarget{193_the_dirac_algebra}{}\paragraph*{{19.3 The Dirac Algebra}}\label{193_the_dirac_algebra} \begin{itemize}% \item [[Lorentz group]] \end{itemize} \hypertarget{194_the_dirac_operator_in_minkowski_space}{}\paragraph*{{19.4 The Dirac Operator in Minkowski Space}}\label{194_the_dirac_operator_in_minkowski_space} \begin{itemize}% \item [[Dirac operator]] \end{itemize} \hypertarget{195_the_dirac_operator_in_curved_spacetime}{}\paragraph*{{19.5 The Dirac Operator in Curved Space-Time}}\label{195_the_dirac_operator_in_curved_spacetime} \hypertarget{20_yangmills_fields}{}\subsubsection*{{20 Yang-Mills Fields}}\label{20_yangmills_fields} \hypertarget{201_noethers_theorem_for_internal_symmetries}{}\paragraph*{{20.1 Noether's Theorem for Internal Symmetries}}\label{201_noethers_theorem_for_internal_symmetries} \begin{itemize}% \item [[Noether's theorem]] \end{itemize} \hypertarget{202_weyls_gauge_invariance_revisited}{}\paragraph*{{20.2 Weyl's Gauge Invariance Revisited}}\label{202_weyls_gauge_invariance_revisited} \begin{itemize}% \item [[gauge invariance]] \end{itemize} \hypertarget{203_the_yangmills_nucleon}{}\paragraph*{{20.3 The Yang-Mills Nucleon}}\label{203_the_yangmills_nucleon} \begin{itemize}% \item [[nucleon]] \end{itemize} \hypertarget{204_compact_groups_and_yangmills_action}{}\paragraph*{{20.4 Compact Groups and Yang-Mills Action}}\label{204_compact_groups_and_yangmills_action} \begin{itemize}% \item [[compact Lie group]] \item [[Yang-Mills theory]] \end{itemize} \hypertarget{205_the_yangmills_equation}{}\paragraph*{{20.5 The Yang-Mills Equation}}\label{205_the_yangmills_equation} \begin{itemize}% \item [[Yang-Mills equation]] \end{itemize} \hypertarget{206_the_yangmills_instanton}{}\paragraph*{{20.6 The Yang-Mills Instanton}}\label{206_the_yangmills_instanton} \begin{itemize}% \item [[Yang-Mills instanton]] \end{itemize} \hypertarget{21_betti_numbers_and_covering_spaces}{}\subsubsection*{{21 Betti Numbers and Covering Spaces}}\label{21_betti_numbers_and_covering_spaces} \hypertarget{211_biinvariant_forms_on_compact_groups}{}\paragraph*{{21.1 Bi-invariant Forms on Compact Groups}}\label{211_biinvariant_forms_on_compact_groups} \hypertarget{212_the_fundamental_group_and_covering_spaces}{}\paragraph*{{21.2 The Fundamental Group and Covering Spaces}}\label{212_the_fundamental_group_and_covering_spaces} \begin{itemize}% \item [[fundamental group]] \item [[covering space]] \item [[universal covering space]] \end{itemize} \hypertarget{213_the_theorem_of_sb_myers_a_problem_set}{}\paragraph*{{21.3 The Theorem of S.B. Myers: A Problem Set}}\label{213_the_theorem_of_sb_myers_a_problem_set} \hypertarget{214_the_geometry_of_a_lie_group}{}\paragraph*{{21.4 The Geometry of a Lie Group}}\label{214_the_geometry_of_a_lie_group} \begin{itemize}% \item [[Lie group]] \end{itemize} \hypertarget{22_chern_forms_and_homotopy_groups}{}\subsubsection*{{22 Chern Forms and Homotopy Groups}}\label{22_chern_forms_and_homotopy_groups} \hypertarget{221_chernforms_and_winding_numbers}{}\paragraph*{{22.1 Chern-Forms and Winding Numbers}}\label{221_chernforms_and_winding_numbers} \begin{itemize}% \item [[invariant polynomial]] \item [[Chern form]] \end{itemize} \hypertarget{222_homotopies_and_extensions}{}\paragraph*{{22.2 Homotopies and Extensions}}\label{222_homotopies_and_extensions} \begin{itemize}% \item [[homotopy]] \item [[extension]] \end{itemize} \hypertarget{223_the_higher_homotopy_groups_}{}\paragraph*{{22.3 The Higher Homotopy Groups $\pi_k(M)$}}\label{223_the_higher_homotopy_groups_} \begin{itemize}% \item [[homotopy group]] \end{itemize} \hypertarget{224_some_computations_of_homotopy_groups}{}\paragraph*{{22.4 Some Computations of Homotopy Groups}}\label{224_some_computations_of_homotopy_groups} \hypertarget{225_chern_forms_as_obstructions}{}\paragraph*{{22.5 Chern Forms as Obstructions}}\label{225_chern_forms_as_obstructions} \begin{itemize}% \item [[obstruction]] \end{itemize} \hypertarget{appendix_a_forms_in_continuum_mechanics}{}\subsubsection*{{Appendix A. Forms in Continuum Mechanics}}\label{appendix_a_forms_in_continuum_mechanics} \hypertarget{appendix_b_harmonic_chains_and_kirchhoffs_circuit_law}{}\subsubsection*{{Appendix B. Harmonic Chains and Kirchhoff's Circuit Law}}\label{appendix_b_harmonic_chains_and_kirchhoffs_circuit_law} \hypertarget{appendix_c_symmetries_quarks_and_meson_masses}{}\subsubsection*{{Appendix C. Symmetries, Quarks, and Meson Masses}}\label{appendix_c_symmetries_quarks_and_meson_masses} \hypertarget{appendix_d_representations_and_hyperelastic_bodies}{}\subsubsection*{{Appendix D. Representations and Hyperelastic Bodies}}\label{appendix_d_representations_and_hyperelastic_bodies} \hypertarget{appendix_e_orbits_and_morsebott_theory_in_compact_lie_groups}{}\subsubsection*{{Appendix E. Orbits and Morse-Bott Theory in Compact Lie Groups}}\label{appendix_e_orbits_and_morsebott_theory_in_compact_lie_groups} category: reference \end{document}