\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Theta category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ViaFreeStrictOmegaCategory}{Via the free strict $\omega$-category}\dotfill \pageref*{ViaFreeStrictOmegaCategory} \linebreak \noindent\hyperlink{ViaIteratedWreathProduct}{Via iterated wreath product}\dotfill \pageref*{ViaIteratedWreathProduct} \linebreak \noindent\hyperlink{ViaDualsOfDisks}{Via duals of disks}\dotfill \pageref*{ViaDualsOfDisks} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EmbeddingOfGrids}{Embedding of grids (products of the simplex category)}\dotfill \pageref*{EmbeddingOfGrids} \linebreak \noindent\hyperlink{embedding_into_strict_categories}{Embedding into strict $n$-categories}\dotfill \pageref*{embedding_into_strict_categories} \linebreak \noindent\hyperlink{groupoidal_version}{Groupoidal version}\dotfill \pageref*{groupoidal_version} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $n \in \mathbb{N}$ the [[category]] $\Theta_n$ -- \textbf{Joyal's disk category} or \textbf{cell category} -- may be thought of as the [[full subcategory]] of the category $Str n Cat$ of [[strict ∞-category|strict n-categories]] on those $n$-categories that are [[free construction|free]] on [[pasting diagrams]] of $n$-[[globe]]s. For instance $\Theta_2$ contains an [[object]] that is depicted as \begin{displaymath} \itexarray{ & \nearrow &\Downarrow& \searrow && && \nearrow && \searrow \\ a && \to && b &\to & c && \Downarrow && b \\ & \searrow &\Downarrow& \nearrow && && \searrow && \nearrow && } \,, \end{displaymath} being the pasting diagram of two 2-[[globes]] along a common 1-globe and of the result with a 1-globe and another 2-globe along common 0-globes. Such pasting diagrams may be alternatively encoded in [[planar trees]], the above one corresponds to the tree: \begin{displaymath} \itexarray{ \nwarrow \nearrow & & & \uparrow &&& 2 \\ & \nwarrow & \uparrow & \nearrow &&& 1 \\ && {*} } \,. \end{displaymath} Accordingly, $\Theta_n$ is also the category of planar rooted trees of level $\leq n$. In low degree we have \begin{itemize}% \item $\Theta_0 = *$ is the [[point]]. \item $\Theta_1 = \Delta$ is the [[simplex category]]: the $n$-[[simplex]] $[n]$ is thought of as a linear [[quiver]] and as such the pasting diagram of $n$ 1-morphisms \begin{displaymath} 0 \to 1 \to \cdots \to n \,. \end{displaymath} Dually, this is the planar rooted tree of the form \begin{displaymath} \itexarray{ \nwarrow &\uparrow & \cdots \nearrow \\ &{*} } \end{displaymath} with $n$-branches. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We discuss two equivalent definitions \begin{itemize}% \item \hyperlink{ViaFreeStrictOmegaCategory}{Via the free strict $\omega$-category} \item \hyperlink{ViaIteratedWreathProduct}{Via iterated wreath product} \item \hyperlink{ViaDualsOfDisks}{Via duals of disks} \end{itemize} \hypertarget{ViaFreeStrictOmegaCategory}{}\subsubsection*{{Via the free strict $\omega$-category}}\label{ViaFreeStrictOmegaCategory} Let $T(1)$ denote the free [[strict ∞-category]] generated from the [[terminal object|terminal]] [[globular set]] $1$. Notice that this terminal globular set consists of precisely one $k$-[[globe]] for each $k \in \mathbb{N}$: one point, one edge from the point to itself, one disk from the edge to itself, and so on. So $T(1)$ is freely generated under composition from these cells. As described above, this means that each element of the underlying globular set of $T(1)$ may be depicted by a [[pasting diagram]] made out of [[globes]], and such a pasting diagram itself may be considered as a [[globular set]] whose $k$-cells are \emph{instances} of the $k$-globes appearing in the diagram. We now describe this formally. The [[k-morphisms|n-cells]] of $T(1)$ may be identified with \textbf{planar [[trees]]} $\tau$ of height $n$, which by definition are functors \begin{displaymath} \tau: [n]^{op} \to \Delta \end{displaymath} ($\Delta$ is the category of [[simplex|simplices]] and $[n] \in \Delta$ is a simplex, i.e., ordered set $\{0 \lt 1 \lt \ldots \lt n\}$, regarded as a category) such that $\tau(0) = 1$. Such a $\tau$ is exhibited as a chain of morphisms in $\Delta$, \begin{displaymath} \tau(n) \to \tau(n-1) \to \ldots \to \tau(0) = 1, \end{displaymath} and we will denote each of the maps in the chain by $i$. Thus, for each $x \in \tau(k)$, there is a fiber $i^{-1}(x)$ which is a linearly ordered set. (Need to fill in how $\circ_j$ composition of such trees is defined.) To each planar tree $\tau$ we associate an underlying globular set $[\tau]$, as follows. Given $\tau$, define a new tree $\tau'$ where we adjoin a new bottom and top $x_0$, $x_1$ to every fiber $i^{-1}(x)$ of $\tau$, for every $x \in \tau(k)$: \begin{displaymath} i_{\tau'}^{-1}(x) = \{x_0\} \cup i_{\tau}^{-1}(x) \cup \{x_1\} \end{displaymath} Now define a $\tau$-\textbf{sector} to be a triple $(x, y, z)$ where $i(y) = x = i(z)$ and $y, z$ are consecutive edges of $i_{\tau'}^{-1}(x)$. A $k$-\textbf{cell} of the globular set $[\tau]$ is a $\tau$-sector $(x, y, z)$ where $x \in \tau(k)$. If $k \geq 1$, the \textbf{source} of a $k$-cell $(x, y, z)$ is the $(k-1)$-cell $(i(x), u, x)$ and the \textbf{target} is the $(k-1)$-cell $(i(x), x, v)$ where $u \lt x \lt v$ are consecutive elements in $i_{\tau'}^{-1}(i(x))$. It is trivial to check that the globular axioms are satisfied. Now let $T([\tau])$ denote the free strict $\omega$-category generated by the globular set $[\tau]$. \begin{defn} \label{}\hypertarget{}{} $\Theta$ is the [[full subcategory]] of $Str \omega Cat$ on the [[strict ∞-categories]] $T([\tau])$, as $\tau$ ranges over cells in the underlying globular set of $T(1)$. \end{defn} \hypertarget{ViaIteratedWreathProduct}{}\subsubsection*{{Via iterated wreath product}}\label{ViaIteratedWreathProduct} \begin{prop} \label{ByWreathProduct}\hypertarget{ByWreathProduct}{} $\Theta_n$ is the $n$-fold [[categorical wreath product]] of the [[simplex category]] with itself \begin{displaymath} \Theta_n \simeq \Delta^{\wr n} \,. \end{displaymath} \end{prop} (\hyperlink{Berger}{Berger, section 3}) \begin{example} \label{}\hypertarget{}{} So \begin{displaymath} \Theta_1 = \Delta \end{displaymath} \begin{displaymath} \Theta_2 = \Delta \wr \Delta \end{displaymath} etc. \end{example} \begin{cor} \label{}\hypertarget{}{} For all $n \in \mathbb{N}$ there is a canonical embedding \begin{displaymath} \sigma : \Theta_n \hookrightarrow \Theta_{n+1} \end{displaymath} given by $\sigma : a \mapsto ([1], a)$. \end{cor} \hypertarget{ViaDualsOfDisks}{}\subsubsection*{{Via duals of disks}}\label{ViaDualsOfDisks} In analogy to how the [[simplex category]] is [[equivalence of categories|equivalent]] to the [[opposite category]] of finite strict linear [[intervals]], $\Delta \simeq \mathbb{I}^{op}$, so the $\Theta$-category is equivalent to the opposite of the category of Joyal's combinatorial finite [[disks]]. \begin{displaymath} \Theta \coloneqq \mathbb{D}^{op} \,. \end{displaymath} (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EmbeddingOfGrids}{}\subsubsection*{{Embedding of grids (products of the simplex category)}}\label{EmbeddingOfGrids} \begin{defn} \label{}\hypertarget{}{} For any [[small category]] $A$ there is a canonical functor \begin{displaymath} \delta_A : \Delta \times A \to \Delta \wr A \end{displaymath} given by \begin{displaymath} \delta_A([n], a) = ([n], a^n) \,. \end{displaymath} \end{defn} (\hyperlink{Berger}{Berger, def. 3.8}) \begin{remark} \label{ProductOfDeltaInTheta}\hypertarget{ProductOfDeltaInTheta}{} By iteration, this induces a canonical functor \begin{displaymath} \delta_n : \Delta^{\times n} \to \Theta_n \,. \end{displaymath} \end{remark} \hypertarget{embedding_into_strict_categories}{}\subsubsection*{{Embedding into strict $n$-categories}}\label{embedding_into_strict_categories} Write $Str n Cat$ for the category of [[strict n-categories]]. \begin{prop} \label{}\hypertarget{}{} There is a [[dense subcategory|dense]] [[full and faithful functor|full embedding]] \begin{displaymath} \Theta_n \hookrightarrow Str n Cat \,. \end{displaymath} \end{prop} This was conjectured in (\hyperlink{BataninStreet}{Batanin-Street}) and shown in terms of free $n$-categories on $n$-graphs in (\hyperlink{MakkaiZawadowsky}{Makkai-Zawadowsky, theorem 5.10}) and (\hyperlink{BergerCellular}{Berger 02, prop. 2.2}). In terms of the wreath product presentation, prop. \ref{ByWreathProduct} this is (\hyperlink{Berger}{Berger 05, theorem 3.7}). \begin{prop} \label{}\hypertarget{}{} Under this embedding an object $([k], (a_1, \cdots, a_k)) \in \Delta \wr \Delta^{\wr (n-1)}$ is identified with the $k$-fold [[horizontal composition]] of the pasting composition of the $(n-1)$-morphisms $a_i$: \begin{displaymath} ([k], (a_1, \cdots, a_k)) = a_1 \cdot a_2 \cdot \cdots \cdot a_k \,. \end{displaymath} \end{prop} \begin{example} \label{}\hypertarget{}{} The [[pasting diagram]] \begin{displaymath} \itexarray{ & \nearrow &\Downarrow& \searrow && && \nearrow && \searrow \\ a && \to && b &\to & c && \Downarrow && b \\ & \searrow &\Downarrow& \nearrow && && \searrow && \nearrow && } \end{displaymath} corresponds to the objects of $\Theta_2 = \Delta \wr \Delta$ given by \begin{displaymath} ([3], (a_1, a_2, a_3)) \,, \end{displaymath} where in turn \begin{itemize}% \item $a_1 = [2]$ \item $a_2 = [0]$ \item $a_3 = [1]$. \end{itemize} \end{example} \begin{example} \label{Grids}\hypertarget{Grids}{} Composing with the functor $\delta_n$ from remark \ref{ProductOfDeltaInTheta} we obtain an embedding of $n$-fold simplices into strict $n$-categories \begin{displaymath} \Delta^{\times n} \stackrel{\delta_n}{\to} \Theta_n \hookrightarrow Str n Cat \,. \end{displaymath} Under this embedding an object $([k_1], [k_2], \cdots, [k_n])$ is sent to the $n$-category which looks like (a globular version of) a $k_1 \times k_2 \times \cdots \times k_n$ \textbf{grid} of $n$-cells. \end{example} Write \begin{displaymath} Str n Cat_{gaunt} \hookrightarrow Str n Cat \end{displaymath} for the inclusion of the \href{http://ncatlab.org/nlab/show/%28infinity%2Cn%29-category#GauntStrictNCategories}{gaunt} strict $n$-categories into all [[strict n-categories]]. \begin{prop} \label{}\hypertarget{}{} $\Theta_n$ is the smallest [[full subcategory]] of $Str n Cat_{gaunt}$ containing the grids, the [[image]] of $\delta_n : \Delta^{\times n} \to Str n Cat$, example \ref{Grids}, and closed under [[retracts]]. \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, prop. 10.5}) \hypertarget{groupoidal_version}{}\subsubsection*{{Groupoidal version}}\label{groupoidal_version} The groupoidal version $\tilde \Theta$ of $\Theta$ is a [[test category]] (\hyperlink{Ara}{Ara}). \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} In $\Theta_0$ write $O_0$ for the unique object. Then write in $\Theta_n$ \begin{displaymath} O_n := [1](O_{n-1}) \,. \end{displaymath} This is the strict [[n-category]] free on a single $n$-[[globe]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[globular theory]] \item [[globular set]] \item [[globular operad]] \item [[simplex category]], [[globe category]], [[cube category]] \item A local [[model structure on simplicial presheaves]] on the Theta categories is called [[Theta space]]s and models [[(n,r)-category|(n,r)-categories]]. \item A [[Cisinski model structure]] on bare [[presheaves]] on $\Theta_n$, modelling [[(∞,n)-categories]] is the [[model structure on cellular sets]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The $\Theta$-categories were introduced in \begin{itemize}% \item [[Andre Joyal]], \emph{Disks, duality and Theta-categories} ([[JoyalThetaCategories.pdf:file]]) \end{itemize} A discussion with lots of pictures is in \href{http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf#page=131}{chapter 7} of \begin{itemize}% \item [[Eugenia Cheng]], [[Aaron Lauda]], \emph{Higher-dimensional categories: an illustrated guidebook} (\href{http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf}{pdf}) \end{itemize} More discussion is in \begin{itemize}% \item David Oury, \emph{On the duality between trees and disks}, TAC vol. 24 (\href{http://www.tac.mta.ca/tac/volumes/24/16/24-16.pdf}{pdf}) \end{itemize} The following paper proves that $\Theta$ is a test category \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Georges Maltsiniotis]], \emph{La cat\'e{}gorie $\Theta$ de Joyal est une cat\'e{}gorie test} , JPAA \textbf{215} no.5 (2011) pp.962-982. (\href{webusers.imj-prg.fr/~georges.maltsiniotis/ps/dec_web.pdf}{draft}) \end{itemize} Discussion of embedding of $\Theta$ into strict $n$-categories is in \begin{itemize}% \item [[Michael Batanin]], [[Ross Street]], \emph{The universal property of the multitude of trees}, J. Pure Appl. Alg. 154 (2000), 3--13. \end{itemize} \begin{itemize}% \item [[Michael Makkai]], M. Zawadowsky, \emph{Duality for simple $\omega$-categories and disks}, Theory Appl. Categories 8 (2001), 114--243 \end{itemize} \begin{itemize}% \item [[Clemens Berger]], \emph{A cellular nerve for higher categories}, Adv. Math. 169 (2002), 118--175. \end{itemize} The characterization in terms of $n$-fold [[categorical wreath products]] is in \begin{itemize}% \item [[Clemens Berger]], \emph{Iterated wreath product of the simplex category and iterated loop spaces} (\href{http://arxiv.org/abs/math/0512575}{arXiv:math/0512575}), \end{itemize} see also section 3 of \begin{itemize}% \item [[Charles Rezk]], \emph{A cartesian presentation of weak $n$-categories} (\href{http://arxiv.org/abs/0901.3602}{arXiv:0901.3602}) \end{itemize} there leading over to the notion of [[Theta space]]. The groupoidal version $\tilde \Theta$ is discussed in \begin{itemize}% \item [[Dimitri Ara]], \emph{The groupoidal analogue $\tilde \Theta$ to Joyal's category $\Theta$ is a test category} (\href{http://arxiv.org/abs/1012.4319}{arXiv:1012.4319}) \end{itemize} The relation of $\Theta_n$ to [[configuration spaces]] of points in the [[Euclidean space]] $\mathbb{R}^n$ is discussed in \begin{itemize}% \item [[David Ayala]], [[Richard Hepworth]], \emph{Configurations spaces and $\Theta_n$} (\href{http://de.arxiv.org/abs/1202.2806}{arXiv:1202.2806}) \end{itemize} Related discussion in the context of [[(infinity,n)-categories]] is also in \begin{itemize}% \item [[Clark Barwick]], [[Chris Schommer-Pries]], \emph{On the Unicity of the Homotopy Theory of Higher Categories} (\href{http://arxiv.org/abs/1112.0040}{arXiv:1112.0040}, \href{http://prezi.com/w0ykkhh5mxak/the-uniqueness-of-the-homotopy-theory-of-higher-categories/}{slides}) \end{itemize} [[!redirects ? category]] [[!redirects Theta-category]] [[!redirects ? categories]] [[!redirects Theta-categories]] [[!redirects disk category]] [[!redirects disk categories]] [[!redirects cell category]] \end{document}