\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Theta characteristic} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{OverRiemannSurfaces}{Over Riemann surfaces}\dotfill \pageref*{OverRiemannSurfaces} \linebreak \noindent\hyperlink{AsMetaplecticCorretionOfKählerPolarizations}{As metaplectic and Spin structure over (K\"a{}hler-)polarized varieties}\dotfill \pageref*{AsMetaplecticCorretionOfKählerPolarizations} \linebreak \noindent\hyperlink{OverIntermediateJacobians}{Over intermediate Jacobians}\dotfill \pageref*{OverIntermediateJacobians} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X$ a [[space]] equipped with a notion of [[dimension]] $dim X \in \mathbb{N}$ and a notion of [[Kähler differential forms]], a \emph{$\Theta$-characteristic of $X$ is a choice of [[square root]] of the [[canonical characteristic class]] of $X$. See there for more details.} In [[complex analytic geometry]] and at least if the Theta characteristic is [[polarized variety|principally polarizing]] then its [[holomorphic sections]] are called [[theta functions]]. In particular for line bundles over the [[Jacobian variety]] of a [[Riemann surface]] they are called \emph{[[Riemann theta functions]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{OverRiemannSurfaces}{}\subsubsection*{{Over Riemann surfaces}}\label{OverRiemannSurfaces} \begin{prop} \label{}\hypertarget{}{} For $\Sigma$ a [[Riemann surface]], the choices of [[square roots]] of the [[canonical bundle]] correspond to the choice of [[spin structures]]. For $X$ of [[genus of a surface|genus]] $g$, there are $2^{2g}$ many choices of square roots of the canonical bundle. \end{prop} (\hyperlink{Atiyah}{Atiyah, prop. 3.2}). \begin{remark} \label{}\hypertarget{}{} The first statement remains true in higher dimensions over [[Kähler manifolds]], see at \emph{\href{spin%20structure#OverAKahlerManifold}{Spin structure -- On K\"a{}hler manifolds}}. \end{remark} \begin{prop} \label{}\hypertarget{}{} The function that sends a square root line bundle to the [[dimension]] of its space of [[holomorphic sections]] $mod \;2$ is a [[quadratic refinement]] of the [[intersection pairing]] on $H^1(X, \mathbb{Z}_2)$. \end{prop} This is due to (\hyperlink{Atiyah}{Atiyah, theorem 2}). A motivational survey in broader context of [[quadratic refinements]] of the [[intersection pairing]] in higher dimensions is in (\hyperlink{HopkinsSinger02}{Hopkins-Singer 02, section 2.1}). \hypertarget{AsMetaplecticCorretionOfKählerPolarizations}{}\subsubsection*{{As metaplectic and Spin structure over (K\"a{}hler-)polarized varieties}}\label{AsMetaplecticCorretionOfKählerPolarizations} In the context of [[geometric quantization]] a [[metaplectic structure]] on a [[polarization]] is a [[square root]] of a certain line bundle. In the special case of [[Kähler polarization]] this is a square root precisely of the [[canonical line bundle]] of the underlying [[complex manifold]] and hence is a $\Theta$-characteristic. Also, equivalently this is a [[Spin structure]], see at \emph{\href{http://ncatlab.org/nlab/show/spin%20structure#OverAKahlerManifold}{spin structure -- Over a K\"a{}hler manifold}}. For more on this see at \emph{\href{geometric+quantization#IndexOfDolbeaultDiracOperator}{geometric quantization -- Quantum states as index of Dolbeault-Dirac operator}}. Notice that generalizing from [[complex analytic geometry]] to [[algebraic geometry]] over other bases, then the analog of a [[Kähler polarization]] is a \emph{[[polarized variety]]}. Hence a choice of [[Theta characteristic]] on a [[polarized variety]] is the analog of a metaplectically corrected K\"a{}hler manifold. \hypertarget{OverIntermediateJacobians}{}\subsubsection*{{Over intermediate Jacobians}}\label{OverIntermediateJacobians} A special square root of the canonical bundle on [[intermediate Jacobians]] in dimension $2k+1$ thought of as [[moduli spaces]] of (flat) [[circle n-bundles with connection|circle (2k+1)-bundles with connection]] has a unique [[section]] the [[partition function]] of abelian [[self-dual higher gauge theory]] (see there for details). (\hyperlink{Witten96}{Witten 96}, \hyperlink{HopkinsSinger02}{Hopkins-Singer 02}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include square roots of line bundles - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The spaces of choices of $\Theta$-characteristics over [[Riemannian manifolds]] were originally discussed in \begin{itemize}% \item [[Michael Atiyah]], \emph{Riemann surfaces and spin structures}, Annales Scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, (1971), Quatri\`e{}me S\'e{}rie 4: 47--62, ISSN 0012-9593, MR0286136 \end{itemize} See also \begin{itemize}% \item M. Bertola, \emph{Riemann surfaces and Theta Functions}, August 2010 (\href{http://www.mathstat.concordia.ca/faculty/bertola/ThetaCourse/ThetaCourse.pdf}{pdf}) \item Gavril Farkas, \emph{Theta characteristics and their moduli} (2012) (\href{http://arxiv.org/abs/1201.2557}{arXiv:1201.2557}) \end{itemize} The relation of Theta characteristics on [[intermediate Jacobians]] to [[self-dual higher gauge theory]] was first recognized in \begin{itemize}% \item [[Edward Witten]], \emph{Five-Brane Effective Action In M-Theory}, J.Geom.Phys.22:103-133,1997 (\href{http://arxiv.org/abs/hep-th/9610234}{arXiv:hep-th/9610234}) \end{itemize} and the argument there was made rigorous in \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology, and M-Theory]]} \end{itemize} Related arguments revolving around [[characteristic element of a bilinear form|characteristic elements]] for the [[intersection pairing]] appear in \begin{itemize}% \item Bjorn Poonen, Eric Rains, \emph{Self cup products and the theta characteristic torsor} (\href{http://arxiv.org/abs/1104.2105}{arXiv:1104.2105}) \end{itemize} [[!redirects ? characteristic]] [[!redirects ∞-characteristic]] [[!redirects Theta-characteristic]] [[!redirects ? characteristics]] [[!redirects ∞-characteristics]] [[!redirects Theta characteristics]] [[!redirects Theta-characteristics]] [[!redirects theta characteristic]] [[!redirects theta characteristics]] [[!redirects theta-characteristic]] [[!redirects theta-characteristics]] \end{document}