\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Theta-space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{special_values_of_}{Special values of $(n,k)$}\dotfill \pageref*{special_values_of_} \linebreak \noindent\hyperlink{cartesian_monoidal_and_enriched_structure}{Cartesian monoidal and enriched structure}\dotfill \pageref*{cartesian_monoidal_and_enriched_structure} \linebreak \noindent\hyperlink{OfAll}{$(n+1,r+1)$-$\Theta$-space of $(n,r)$-$\Theta$-spaces}\dotfill \pageref*{OfAll} \linebreak \noindent\hyperlink{homotopy_hypothesis}{Homotopy hypothesis}\dotfill \pageref*{homotopy_hypothesis} \linebreak \noindent\hyperlink{relation_to_cellular_sets}{Relation to cellular sets}\dotfill \pageref*{relation_to_cellular_sets} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$\Theta_n$-space} is one model for the notion of \emph{[[(∞,n)-category]]}. A $\Theta_n$-space may be thought of as a [[globe category|globular]] $n$-category \emph{up to coherent homotopy}, a globular $n$-category \emph{[[internalization|internal]]} to the [[(∞,1)-category]] [[∞Grpd]]. Concretely, a \emph{$\Theta_n$-space is a [[simplicial presheaf]] on the [[Theta category|Theta}n category]], hence a ``[[cellular object|cellular space]]'' that satisfies \begin{enumerate}% \item the globular [[Segal condition]] as a [[weak homotopy equivalence]]; \item and a completeness condition analogous to that of [[complete Segal spaces]]. \end{enumerate} In fact for $n = 1$ $\Theta_n = \Delta$ is the simplex category and a $\Theta_1$-space is the same as a [[complete Segal space]]. Noticing that a presheaf of \emph{sets} on $\Theta_n$ which satisfies the cellular [[Segal condition]] is equivalently a [[strict n-category]], $Theta_n$-spaces may be thought of as [[n-categories]] [[internal category in an (infinity,1)-category|internal to]] the [[(∞,1)-category]] [[∞Grpd]], defined in the [[cell category|cellular]] way. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} There is a [[cartesian closed category|cartesian closed]] [[category with weak equivalences]] $\Theta_n Sp_k^{fib}$ of \textbf{$(n+k,n)$-$\Theta$-spaces} for all \begin{itemize}% \item $0 \leq n \leq \infty$; \item $-2 \leq k \leq \infty$ \end{itemize} as the [[category of fibrant objects]] in a [[model category]] $\Theta_n Sp_k$,\newline being a [[Bousfield localization of model categories|left Bousfield localization]] of the injective [[model structure on simplicial presheaves]] on the $n$th [[Theta category]]. The [[weak equivalences]] in $\Theta_n Sp_k^{fib}$ are then (by the standard result discussed at [[Bousfield localization of model categories]]) just the objectwise weak equivalences in the standard [[model structure on simplicial sets]] $sSet_{Quillen}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $J$ a [[category]], write $\Theta J$ for the [[categorical wreath product]] over the [[simplex category]] $\Delta$ \href{http://arxiv.org/abs/math/0512575}{Ber05}. Then with $\Theta_0 := {*}$ we have inductively \begin{displaymath} \Theta_n = \Theta \Theta_{n-1} \,. \end{displaymath} For $D = SPSh(C)^{inj}_{S}$ a [[model structure on simplicial presheaves]] on a category $C$ obtained by left [[Bousfield localization]] at a set of morphisms $S \subset Mor(SPSh(C)^{inj})$ from the global injective model structure, write \begin{displaymath} D-\Theta Sp := SPSh(\Theta C)^{inj}_{S_\Theta} \,, \end{displaymath} where $S_\Theta$ is the set of morphisms given by \ldots{}. . Set \begin{displaymath} \Theta_0 Sp_k := SSet_k \,, \end{displaymath} the left [[Bousfield localization]] of the standard [[model structure on simplicial sets]] such that fibrant objects are the [[Kan complex]]es that are [[homotopy n-type|homotopy k-type]]s. Then finally define inductively \begin{displaymath} \Theta_{n+1} Sp_k := (\Theta_n Sp_k)-\Theta Sp \,. \end{displaymath} Unwinding this definition we see that \begin{displaymath} \Theta_{n} Sp_k = SPSh(\Theta_n)^{inj}_{S_{n}} \,, \end{displaymath} for some set $S_n \subset Mor(SPSh(C))$ of morphisms. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{special_values_of_}{}\subsubsection*{{Special values of $(n,k)$}}\label{special_values_of_} I would have started $k$ at $-1$. What does Rezk's notion do with $k = -2$? ---Toby $-1$-groupoids are spaces which are either empty or contractible. $-2$-groupoids are spaces which are contractible. So $k=-2$ is the completely trivial case; it's included for completeness. -- Charles I do know what a $(-2,0)$-category is, a triviality as you say. But for $n \gt 0$, an $(n-2,n)$-category is the same as an $(n-2,n-1)$-category as far as I can see. (Note: I say this \emph{without} having worked through your version, but just thinking about what $(n,r)$-categories should be, as at [[(n,r)-category]].) ---Toby I would say: $(n-2,n)$-category is a trivial concept, for every $n$, though $(n-2,n-1)$ isn't. An $(n+1+k,n+1)$-category should amount to a category enriched over $(n+k,n)$-categories. An $(-2,0)$-category is trivial (a point); an $(-1,1)$-category is a category enriched over the point, and so equivalent to the terminal category; an $(0,2)$-category is a category enriched over categories which are equivalent to the terminal category (and so equivalent to the terminal $2$-category, etc.) -- Charles R. (Sorry for not noticing before that you \emph{are} Charles Rezk; for some reason I though of [[Charles Wells]].) ---Toby [[David Roberts]]: I'm a little confused. The way I think about it, and I may have the indexing wrong, is that in an $(n,n+2)$-category $C$, for \emph{all} pairs of $n$-arrows $x,y$, there is a unique $n+1$-arrow between them. This implies that $x$ and $y$ are parallel, in particular, that $C$ has a single $(n-1)$-arrow. \emph{Toby}: Wait, I don't buy Charles's argument after all. Yes, a $(-1,1)$-category is a category enriched over the point, but that doesn't make it necessarily the terminal category; it makes it a truth value. If it has an object, then it's trivial, but it might be empty instead. The difference between a $(-1,1)$-category and a $(-1,0)$-category is that every $0$-morphism in the latter must be invertible, which is no difference at all; that's why we have this repetition. (And thereafter it propagates indefinitely.) Similarly, with David's argument, what if $C$ has no $n$-arrows at all? [[David Roberts]]: Yes - that should then be 'Assuming $C$ has an object, then it has a single $(n-1)$-arrow'. Assuming I got the indexing right, I must stress. I think I grasp $(n,n+1)$-categories, but I'm not solid on these new beasties. Toby, I guess you are right. I don't know what I was thinking. -- Charles R. Thanks for joining, in, Charles. Toby is, by the way, our esteemed expert for -- if not the inventor of -- [[negative thinking]]. :-) - [[Urs Schreiber|USc]] \emph{Toby}: All right, so we allow $k = -2$, since $n$ might be $0$; but for an $(n-2,n)$-$\Theta$-space is the same as an $(n-1,n)$-$\Theta$-space for $n \gt 0$. OK, I'm happy with that; now to understand the definition! ({\tt \symbol{94}}\_{\tt \symbol{94}}) \hypertarget{cartesian_monoidal_and_enriched_structure}{}\subsubsection*{{Cartesian monoidal and enriched structure}}\label{cartesian_monoidal_and_enriched_structure} The [[model category]] $\Theta_n Sp_k$ is a [[cartesian monoidal category|cartesian]] [[monoidal model category]]. The idea is that $\Theta_n Sp_k$ is naturally an [[enriched model category]] over itself. \hypertarget{OfAll}{}\subsubsection*{{$(n+1,r+1)$-$\Theta$-space of $(n,r)$-$\Theta$-spaces}}\label{OfAll} Here is the idea on how to implement the notion $(n+1,r+1)$-category of all $(n,r)$-categories in the context of Theta-spaces. At the time of this writing, this hasn't been spelled out in total. As mentioned above regard $\Theta_k Sp_n$ as a category enriched over itself. Then define a presheaf $\mathbf{X}$ on $\Theta_{n+1}$ by setting \begin{itemize}% \item $\mathbf{X}[0] =$ collection of objects of $\Theta_n Sp_k$ \item $\mathbf{X}([m](\theta_1, \cdots, \theta_m)) = \coprod_{a_0, \cdots, a_m} C(a_0,a_1)(\theta_1) \times \cdots \times C(a_{m-1},a_m)(\theta_m)$ \end{itemize} This object satisfies the [[Segal conditions]] (its descent conditions) in all degrees except degree 0. A suitable localization operation ca-n fix this. The resulting object should be the ``$(n+1,k+1)$-$\Theta$-space of $(n,k)$-$\Theta$-spaces''. \hypertarget{homotopy_hypothesis}{}\subsubsection*{{Homotopy hypothesis}}\label{homotopy_hypothesis} The definition of weak $(n,r)$-categories modeled by $\Theta$-spaces does satisfy the [[homotopy hypothesis]]: there is an evident notion of groupoid objects in $\Theta_n Sp_k$ and the full subcategory on these models [[homotopy n-types]]. (\hyperlink{Rezk}{Rez09, 11.25}). \hypertarget{relation_to_cellular_sets}{}\subsubsection*{{Relation to cellular sets}}\label{relation_to_cellular_sets} There is a [[model structure on cellular sets]] (see there), hence on set-valued presheaves on $\Theta_n$ (instead of simplicial presheaves) which is [[Quillen equivalence|Quillen equivalent]] to the Rezk model structure on $\Theta_n$-spaces. In fact the Theta-space model structure is the \href{Cisinski+model+structure#SimplicialCompletion}{simplicial completion} of the [[Cisinski model structure]] on presheaves on $\Theta_n$ (\hyperlink{Ara}{Ara}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For low values of $n,k$ this reproduces the following cases: \begin{itemize}% \item for $n=0$ we have $\Theta_0 Sp_\infty = sSet_{Quillen}$ with its [[model structure on simplicial sets|standard model structure]] and hence $\Theta_0 Sp_\infty^{fib} =$ [[∞Grpd]]. \item for $n=1$ objects in $\Theta_1 Sp_\infty^{fib}$ are [[complete Segal spaces]], hence [[(∞,1)-category|(∞,1)-categories]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cellular set]] \item [[omega-category]] \item [[globular operad]], [[globular theory]], \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of $\Theta$-spaces was introduced in \begin{itemize}% \item [[Charles Rezk]], \emph{A cartesian presentation of weak $n$-categories} Geom. Topol. 14 (2010), no. 1, 521--571 (\href{http://arxiv.org/abs/0901.3602}{arXiv:0901.3602}) \emph{Correction to ``A cartesian presentation of weak $n$-categories''} Geom. Topol. 14 (2010), no. 4, 2301--2304. MR 2740648 (\href{http://www.math.uiuc.edu/~rezk/cs-objects-correction.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Charles Rezk]], \emph{Cartesian presentations of weak n-categories An introduction to $\Theta_n$-spaces} (2009) (\href{http://www.math.uiuc.edu/~rezk/northwestern-2009-n-cat-handout.pdf}{pdf}) \end{itemize} The definition of the categories $\Theta_n$ goes back to [[Andre Joyal]] who also intended to define [[n-category|n-categories]] using it. This has been achieved at about the same time by Simpson: \begin{itemize}% \item [[Simpson, Carlos]], \emph{A closed model structure for $n$-categories, internal $Hom$, $n$-stacks and generalized Seifert-Van Kampen} (\href{https://arxiv.org/abs/alg-geom/9704006}{arXiv:alg-geom/9704006}) \item [[Simpson, Carlos]], \emph{On the Breen-Baez-Dolan stabilization hypothesis for Tamsamani's weak n-categories} (\href{https://arxiv.org/abs/math/9810058}{arXiv:math/9810058}) \end{itemize} Discussion comparing $\Theta_{n+1}$-spaces to [[enriched (infinity,1)-categories]] in $\Theta_n$-spaces is in \begin{itemize}% \item [[Julie Bergner]], [[Charles Rezk]], \emph{Comparison of models for $(\infty,n)$-categories} (\href{http://arxiv.org/abs/1204.2013}{arXiv:1204.2013}) \item [[Julie Bergner]], [[Charles Rezk]], \emph{Comparison of models for $(\infty,n)$-categories II} (\href{http://arxiv.org/abs/1406.4182}{arXiv:1406.4182}) \end{itemize} The note on the $(n+1,k+1)$-$\Theta$-space of all $(n,k)$-$\Theta$-spaces comes from communication with [[Charles Rezk]] \href{http://mathoverflow.net/questions/5867/n1-r1-theta-space-of-n-r-theta-spaces}{here}. Relation to simplicial completion of the [[Cisinski model structure]] [[model structure on cellular sets|on cellular sets]] is in \begin{itemize}% \item [[Dimitri Ara]], \emph{Higher quasi-categories vs higher Rezk spaces} (\href{http://arxiv.org/abs/1206.4354}{arXiv:1206.4354}) \end{itemize} [[!redirects theta space]] [[!redirects theta-space]] [[!redirects theta spaces]] [[!redirects theta-spaces]] [[!redirects Theta space]] [[!redirects Theta-Space]] [[!redirects ? Space]] [[!redirects ∞-Space]] [[!redirects ? space]] [[!redirects ∞-space]] [[!redirects Theta spaces]] [[!redirects Theta-Spaces]] [[!redirects Theta-spaces]] [[!redirects ? Spaces]] [[!redirects ∞-Spaces]] [[!redirects ? spaces]] [[!redirects ∞-spaces]] [[!redirects Theta\_n space]] [[!redirects Theta\_n spaces]] \end{document}