\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Thom isomorphism} \begin{quote}% This entry is about the isomorphisms in [[cohomology]] induced by [[Thom classes]]. For the [[Pontrjagin-Thom isomorphism]] in [[cobordism theory]] see at \emph{[[Thom's theorem]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{concretely}{Concretely}\dotfill \pageref*{concretely} \linebreak \noindent\hyperlink{in_ordinary_cohomology}{In ordinary cohomology}\dotfill \pageref*{in_ordinary_cohomology} \linebreak \noindent\hyperlink{in_generalized_cohomology}{In generalized cohomology}\dotfill \pageref*{in_generalized_cohomology} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $H$ being [[ordinary cohomology]] with [[coefficients]] in a [[ring]], and $V \to X$ a [[vector bundle]] of rank $n$ over a simply connected CW-complex, the \textbf{Thom isomorphism} is the morphism \begin{displaymath} c \cup (-) \;\colon\; H^\bullet(X) \stackrel{\simeq}{\longrightarrow} \tilde H^{\bullet + n}(Th(V)) \,. \end{displaymath} from the [[cohomology]] of $X$ to the [[reduced cohomology]] of the [[Thom space]] $Th(V)$, given by pullback to the [[Thom space]] followed by [[cup product]] with a [[Thom class]] $c \in H^n(Th(V))$. That this is indeed an [[isomorphism]] follows via the [[Leray-Hirsch theorem]] (see e.g. \hyperlink{Ebert12}{Ebert 12, 2.3,2.4}) or from running a [[Serre spectral sequence]] (e.g. \hyperlink{Kochman96}{Kochman 96, section 2.6}). In the special case that the vector bundle is trivial of rank $n$, then its [[Thom space]] coincides with the $n$-fold [[suspension]] of the base space (\href{Thom+space#ThomSpaceConstructionReducingToSuspension}{exmpl.}) and the Thom isomorphism coincides with the [[suspension isomorphism]]. In this sense the Thom isomorphism may be regarded as a \emph{twisted suspension isomorphism}. More generally for $E$ a [[multiplicative cohomology theory]], and $V \to X$ a [[vector bundle]] of rank $n$, which is $E$-[[orientation in generalized cohomology|orientable]], there is a generalization to a \textbf{Thom-Dold isomorphism} \begin{displaymath} c \cup (-) \;\colon\; E^\bullet(X) \stackrel{\simeq}{\longrightarrow} \tilde E^{\bullet + n}(Th(V)) \end{displaymath} (e.g. \hyperlink{Rudyak98}{Rudyak 98, chapter V, 1.3}, \hyperlink{Kochman96}{Kochman 96, prop. 4.3.6}) One may think of the Thom isomorphism from left to right as [[cup product|cupping]] with a generalized [[volume form]] on the fibers, and from right to left as performing [[fiber integration]] against this volume form. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{concretely}{}\subsubsection*{{Concretely}}\label{concretely} \hypertarget{in_ordinary_cohomology}{}\paragraph*{{In ordinary cohomology}}\label{in_ordinary_cohomology} \begin{prop} \label{Smooth0TypeIsSheavesOnSmoothMfd}\hypertarget{Smooth0TypeIsSheavesOnSmoothMfd}{} Let $V \to B$ be a topological [[vector bundle]] of [[rank]] $n \gt 0$ over a [[simply connected topological space|simply connected]] [[CW-complex]] $B$. Let $R$ be a [[commutative ring]]. There exists an element $c \in H^n(Th(V);R)$ (in the [[ordinary cohomology]], with [[coefficients]] in $R$, of the [[Thom space]] of $V$, called a \textbf{[[Thom class]]}) such that forming the [[cup product]] with $c$ induces an [[isomorphism]] \begin{displaymath} H^\bullet(B;R) \overset{c \cup (-)}{\longrightarrow} \tilde H^{\bullet + n}(Th(V);R) \end{displaymath} of degree $n$ from the unreduced [[cohomology group]] of $B$ to the [[reduced cohomology]] of the [[Thom space]] of $V$. \end{prop} \begin{proof} \textbf{(of Thom isomorphism via fiberwise Thom spaces)} Choose an [[orthogonal structure]] on $V$. Consider the \emph{fiberwise} [[cofiber]] \begin{displaymath} E \coloneqq D(V)/_B S(V) \end{displaymath} of the inclusion of the [[unit sphere]] bundle into the unit disk bundle of $V$ (\href{Thom+space#ThomSpace}{def.}). \begin{displaymath} \itexarray{ S^{n-1} &\hookrightarrow& D^n &\longrightarrow& S^n \\ \downarrow && \downarrow && \downarrow \\ S(V) &\hookrightarrow& D(V) &\longrightarrow& E \\ \downarrow && \downarrow && \downarrow^{\mathrlap{p}} \\ B &=& B &=& B } \end{displaymath} Observe that this has the following properties \begin{enumerate}% \item $E \overset{p}{\to} B$ is an [[n-sphere]] [[fiber bundle]], hence in particular a [[Serre fibration]]; \item the [[Thom space]] $Th(V)\simeq E/B$ is the quotient of $E$ by the base space, because of the [[pasting law]] applied to the following pasting diagram of [[pushout]] squares \begin{displaymath} \itexarray{ S(V) &\longrightarrow& D(V) \\ \downarrow &(po)& \downarrow \\ B &\longrightarrow& D(V)/_B S(V) \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Th(V) } \end{displaymath} \item hence the [[reduced cohomology]] of the Thom space is (\href{Introduction+to+Stable+homotopy+theory+--+S#ReducedToUnreducedGeneralizedCohomology}{def.}) the [[relative cohomology]] of $E$ relative $B$ \begin{displaymath} \tilde H^\bullet(Th(V);R) \simeq H^\bullet(E,B;R) \,. \end{displaymath} \item $E \overset{p}{\to} B$ has a global [[section]] $B \overset{s}{\to} E$ (given over any point $b \in B$ by the class of any point in the fiber of $S(V) \to B$ over $b$; or abstractly: induced via the above pushout by the commutation of the projections from $D(V)$ and from $S(V)$, respectively). \end{enumerate} In the following we write $H^\bullet(-)\coloneqq H^\bullet(-;R)$, for short. By the first point, there is the [[Thom-Gysin sequence]], an [[exact sequence]] running vertically in the following diagram \begin{displaymath} \itexarray{ && H^\bullet(B) \\ && {}^{\mathllap{p^\ast}}\downarrow & \searrow^{\mathrlap{\simeq}} \\ \tilde H^\bullet(Th(V)) &\longrightarrow& H^\bullet(E) &\underset{s^\ast}{\longrightarrow}& H^\bullet(B) \\ && \downarrow \\ && H^{\bullet-n}(B) } \,. \end{displaymath} By the second point above this is [[split exact sequence|split]], as shown by the diagonal isomorphism in the top right. By the third point above there is the horizontal exact sequence, as shown, which is the \href{generalized+%28Eilenberg-Steenrod%29+cohomology#ExactnessUnreduced}{exact sequence in relative cohomology} $\cdots \to H^\bullet(E,B) \to H^\bullet(E) \to H^\bullet(B) \to \cdots$ induced from the section $B \hookrightarrow E$. Hence using the splitting to decompose the term in the middle as a [[direct sum]], and then using horizontal and vertical exactness at that term yields \begin{displaymath} \itexarray{ && H^\bullet(B) \\ && {}^{\mathllap{(0,id)}}\downarrow & \searrow^{\mathrlap{\simeq}} \\ \tilde H^\bullet(Th(V)) &\overset{(id,0)}{\hookrightarrow}& \tilde H^\bullet(Th(V)) \oplus H^\bullet(B) &\underset{(0,id)}{\longrightarrow}& H^\bullet(B) \\ && \downarrow^{\mathrlap{(id,0)}} \\ && H^{\bullet-n}(B) } \end{displaymath} and hence an isomorphism \begin{displaymath} \tilde H^\bullet(Th(V)) \overset{\simeq}{\longrightarrow} H^{\bullet-n}(B) \,. \end{displaymath} To see that this is the inverse of a morphism of the form $c \cup (-)$, inspect the \href{Thom-Gysin+sequence#ProofOfThomGysinSequence}{proof of the Gysin sequence}. This shows that $H^{\bullet-n}(B)$ here is identified with elements that on the second page of the corresponding [[Serre spectral sequence]] are cup products \begin{displaymath} \iota \cup b \end{displaymath} with $\iota$ fiberwise the canonical class $1 \in H^n(S^n)$ and with $b \in H^\bullet(B)$ any element. Since $H^\bullet(-;R)$ is a [[multiplicative cohomology theory]] (because the [[coefficients]] form a [[ring]] $R$), cup producs are preserved as one passes to the $E_\infty$-page of the spectral sequence, and the morphism $H^\bullet(E) \to B^\bullet(B)$ above, hence also the isomorphism $\tilde H^\bullet(Th(V)) \to H^\bullet(B)$, factors through the $E_\infty$-page (see towards the end of the \href{Thom-Gysin+sequence#ProofOfThomGysinSequence}{proof of the Gysin sequence}). Hence the image of $\iota$ on the $E_\infty$-page is the Thom class in question. \end{proof} \hypertarget{in_generalized_cohomology}{}\paragraph*{{In generalized cohomology}}\label{in_generalized_cohomology} Let $E$ be a [[generalized (Eilenberg-Steenrod) cohomology]] theory. First observe that an [[E-orientation]] on $V \to X$ induces an $H \pi_0(E)$-orientation, i.e. in [[ordinary cohomology]] with coefficients in the degree-0 ground ring. To see this, let's assume $E$ is [[connective spectrum|connective]]. Consider the [[relative Atiyah-Hirzebruch spectral sequence]] \begin{displaymath} \tilde H^p(Th(V), E^q(\ast)) \simeq H^p(D(V),S(V), E^q(\ast)) \;\Rightarrow\; E^\bullet(D(V), S(V)) \simeq \tilde E^\bullet(Th(V)) \end{displaymath} Since $(D(V), S(V))$ is $(n-1)$-connected for a rank $n$ vector bundle, then $E_2^{p \lt n, q} = 0$. Hence the edge homomorphism \begin{displaymath} \tilde H^k(Th(V), E^0(\ast)) \longrightarrow \tilde H^0(Th(V)) \end{displaymath} is an [[isomorphism]], and one checks that it sends Thom classes to Thom classes. For a fully detailed account see (\hyperlink{Pedrotti16}{Pedrotti 16}). \hypertarget{abstractly}{}\subsubsection*{{Abstractly}}\label{abstractly} A general abstract discussion is around page 30, 31 of (\hyperlink{ABGHR}{ABGHR}). (\ldots{}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The Thom isomorphism is used to define [[fiber integration]] of multiplicative cohomology theories. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Thom-Gysin sequence]] \item [[cobordism theory]] \item [[Thom space]], [[Thom spectrum]] \item [[fiber integration]] \item [[Pontrjagin-Thom collapse map]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original proof that the Thom isomorphism is indeed an [[isomorphism]] is due to \begin{itemize}% \item [[René Thom]], \emph{Quelques propri\'e{}t\'e{}s globales des vari\'e{}t\'e{}s diff\'e{}rentiables} Comm. Math. Helv. , 28 (1954) pp. 17--86 \end{itemize} The argument via a [[Serre spectral sequence]] for a relative fibration seems to be due to \begin{itemize}% \item W. H. Cockcroft, \emph{On the Thom isomorphism Theorem}, Mathematical Proceedings of the Cambridge Philosophical Society (1962), 58 (\href{http://journals.cambridge.org/abstract_S0305004100036409}{web}, \href{http://journals.cambridge.org/action/displayFulltext?type=1&fid=2056796&jid=PSP&volumeId=58&issueId=02&aid=2056788&bodyId=&membershipNumber=&societyETOCSession=}{pdf}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Stanley Kochman]], section 2.6 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Yuli Rudyak]], chapter V of \emph{Thom spectra, Orientability and Cobordism}, Springer 1998 (\href{http://www.maths.ed.ac.uk/~aar/papers/rudyakthom.pdf}{pdf}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Akhil Mathew]], \emph{\href{https://amathew.wordpress.com/2010/12/11/the-thom-isomorphism-theorem/}{The Thom isomorphism theorem}}, 2010 \item [[Johannes Ebert]], sections 2.3, 2.4 of \emph{A lecture course on Cobordism Theory}, 2012 (\href{http://wwwmath.uni-muenster.de/u/jeber_02/skripten/bordism-skript.pdf}{pdf}) \item [[Dan Freed]], lecture 8 of \emph{Bordism: old and new}, 2013 (\href{http://www.ma.utexas.edu/users/dafr/bordism.pdf}{pdf}) \item [[Riccardo Pedrotti]], \emph{Complex oriented cohomology, generalized orientation and Thom isomorphism}, 2016, 2018 ([[PedrotticECohomology2018.pdf:file]]) \end{itemize} A discussion in [[differential geometry]] with fiberwise compactly supported differential forms is around theorem 6.17 of \begin{itemize}% \item [[Raoul Bott]], [[Loring Tu]], \emph{[[Differential Forms in Algebraic Topology]]} \end{itemize} A comprehensive general abstract account for [[multiplicative cohomology theories]] in terms of [[E-infinity ring]] [[spectra]] is in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Units of ring spectra and Thom spectra} (\href{http://arxiv.org/abs/0810.4535}{arXiv:0810.4535}) \end{itemize} An alternative simple formulation in terms of geometric cycles as in [[bivariant cohomology theory]] is in \begin{itemize}% \item Martin Jakob, \emph{A note on the Thom isomorphism in geometric (co)homology} (\href{http://arxiv.org/abs/math/0403540}{arXiv:math/0403540}) \end{itemize} See also \begin{itemize}% \item [[Albrecht Dold]], \emph{Relations between ordinary and extraordinary homology} , Colloq. Algebraic Topology, August 1--10, 1962 , Inst. Math. Aarhus Univ. (1962) pp. 2--9 \item [[Yuli Rudyak]], \emph{On the Thom--Dold isomorphism for nonorientable bundles} Soviet Math. Dokl. , 22 (1980) pp. 842--844 Dokl. Akad. Nauk. SSSR , 255 : 6 (1980) pp. 1323--1325 \item [[Robert Switzer]], \emph{Algebraic topology - homotopy and homology} , Springer (1975) \item myyn.org (Planetmath) \href{http://myyn.org/m/article/thom-space}{Thom space}, \href{http://myyn.org/m/article/thom-class}{Thom class}, \href{http://myyn.org/m/article/thom-isomorphism-theorem}{Thom isomorphism theorem} \end{itemize} Formalization in [[homotopy type theory]] is discussed in \begin{itemize}% \item [[Guillaume Brunerie]], \emph{On the homotopy groups of spheres in homotopy type theory} (\href{http://arxiv.org/abs/1606.05916}{arXiv:1606.05916}) \end{itemize} [[!redirects Thom isomorphisms]] [[!redirects Thom-Dold isomorphism]] [[!redirects Thom-Dold isomorphisms]] \end{document}