\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Thom space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{HomotopyTheoreticNature}{Homotopy-theoretic nature}\dotfill \pageref*{HomotopyTheoreticNature} \linebreak \noindent\hyperlink{behaviour_under_direct_sum_of_vector_bundles}{Behaviour under direct sum of vector bundles}\dotfill \pageref*{behaviour_under_direct_sum_of_vector_bundles} \linebreak \noindent\hyperlink{cwstructure}{CW-structure}\dotfill \pageref*{cwstructure} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Thom space} $Th(V)$ of a real [[vector bundle]] $V \to X$ over a [[topological space]] $X$ is the [[topological space]] obtained by first forming the disk bundle $D(V)$ of (unit) disks in the [[fibers]] of $V$ (with respect to a [[metric]] given by any choice of [[orthogonal structure]]) and then identifying to a point the [[boundaries]] of all the disks, i.e. forming the [[quotient topological space]] by the [[unit sphere bundle]] $S(V)$: \begin{displaymath} Th(V) \coloneqq D(V)/S(V) \,. \end{displaymath} (N.B.: this is a quotient of the \emph{total} spaces of the bundles taken in $Top$, not a bundle quotient in $Top/V$.) This is equivalently the [[mapping cone]] \begin{displaymath} \itexarray{ S(V) &\longrightarrow& * \\ {}^{\mathllap{p}}\downarrow &\swArrow& \downarrow \\ X & \longrightarrow & Th(V) } \end{displaymath} in [[Top]] of the [[sphere]] [[bundle]] of $V$. Therefore more generally, for $P \to X$ any [[n-sphere]]-[[fiber bundle]] over $X$ ([[spherical fibration]]), its Thom space is the the [[mapping cone]] \begin{displaymath} \itexarray{ P &\longrightarrow& * \\ {}^{\mathllap{p}}\downarrow &\swArrow& \downarrow \\ X & \longrightarrow & Th(P) } \end{displaymath} of the bundle projection. For $X$ a [[compact topological space]], $Th(V)$ is a model for [[generalized the|the]] [[one-point compactification]] of the total space $V$. The Thom space of the rank-$n$ [[universal vector bundle]] over the [[classifying space]] $B O(n)$ of the [[orthogonal group]] is usually denoted $M O(n)$. As $n$ ranges, these spaces form the [[Thom spectrum]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{ThomSpace}\hypertarget{ThomSpace}{} Let $X$ be a [[topological space]] and let $V \to X$ be a [[vector bundle]] ([[topological vector bundle]]) over $X$ of [[rank]] $n$, which is [[associated bundle|associated]] to an [[orthogonal group|O(n)]]-[[principal bundle]]. Equivalently this means that $V \to X$ is the [[pullback]] of the [[universal vector bundle]] $E_n \to B O(n)$ over the [[classifying space]]. Since $O(n)$ preserves the [[metric]] on $\mathbb{R}^n$, by definition, such $V$ inherits the structure of a [[metric space]]-[[fiber bundle]]. With respect to this structure:c \begin{enumerate}% \item the \textbf{unit disk bundle} $D(V) \to X$ is the subbundle of elements of [[norm]] $\leq 1$; \item the \textbf{[[unit sphere]] bundle} $S(V)\to X$ is the subbundle of elements of norm $= 1$; $S(V) \overset{i_V}{\hookrightarrow} D(V) \hookrightarrow V$; \item the \textbf{Thom space} $Th(V)$ is the [[cofiber]] (formed in [[Top]] (\href{Top#DescriptionOfLimitsAndColimitsInTop}{prop.})) of $i_V$ \begin{displaymath} Th(V) \coloneqq cofib(i_V) \end{displaymath} canonically regarded as a [[pointed topological space]]. \end{enumerate} \begin{displaymath} \itexarray{ S(V) &\overset{i_V}{\longrightarrow}& D(V) \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Th(V) } \,. \end{displaymath} If $V \to X$ is a general real vector bundle, then there exists an isomorphism to an $O(n)$-[[associated bundle]] and the Thom space of $V$ is, up to based [[homeomorphism]], that of this orthogonal bundle. \end{defn} \begin{remark} \label{ThomSpaceForRankZeroBundle}\hypertarget{ThomSpaceForRankZeroBundle}{} If the [[rank]] of $V$ is positive, then $S(V)$ is non-empty and then the Thom space is the [[quotient topological space]] \begin{displaymath} Th(V) \simeq D(V)/S(V) \,. \end{displaymath} However, in the degenerate case that the [[rank]] of $V$ vanishes, hence the case that $V = X\times \mathbb{R}^0 \simeq X$, then $D(V) \simeq V \simeq X$, but $S(V) = \emptyset$. Hence now the [[pushout]] defining the cofiber is \begin{displaymath} \itexarray{ \emptyset &\overset{i_V}{\longrightarrow}& X \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Th(V) \simeq X_* } \,, \end{displaymath} which exhibits $Th(V)$ as the [[coproduct]] of $X$ with the point, hence as $X$ with a basepoint freely adjoined. \begin{displaymath} Th(X \times \mathbb{R}^0) = Th(X) \simeq X_+ \,. \end{displaymath} \end{remark} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{HomotopyTheoreticNature}{}\subsubsection*{{Homotopy-theoretic nature}}\label{HomotopyTheoreticNature} \begin{prop} \label{ThomSpaceOverCWComplexIsHomotopyCofiber}\hypertarget{ThomSpaceOverCWComplexIsHomotopyCofiber}{} Let $V \to X$ be a [[vector bundle]] over a [[CW-complex]] $X$. Then the Thom space $Th(V)$ (def. \ref{ThomSpace}) is equivalently the [[homotopy cofiber]] (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyFiber}{def.}) of the inclusion $S(V) \longrightarrow D(V)$ of the sphere bundle into the disk bundle. \end{prop} \begin{proof} The Thom space is defined as the ordinary [[cofiber]] of $S(V)\to D(V)$. Under the given assumption, this inclusion is a [[relative cell complex]] inclusion, hence a cofibration in the [[classical model structure on topological spaces]] (\href{Introduction+to+Stable+homotopy+theory+--+P#TopQuillenModelStructure}{thm.}). Therefore in this case the ordinary cofiber represents the homotopy cofiber (\hyperlink{Introduction+to+Stable+homotopy+theory+--+P#HomotopyFiber}{def.}). \end{proof} The equivalence to the following alternative model for this homotopy cofiber is relevant when discussing [[Thom isomorphisms]] and [[orientation in generalized cohomology]]: \begin{prop} \label{ThomSpaceOverCWEquivalentToConeOnInclusionOfComplementOf0Section}\hypertarget{ThomSpaceOverCWEquivalentToConeOnInclusionOfComplementOf0Section}{} Let $V \to X$ be a [[vector bundle]] over a [[CW-complex]] $X$. Write $V \setminus X$ for the [[complement]] of its 0-[[section]]. Then the Thom space $Th(V)$ (def. \ref{ThomSpace}) is [[homotopy equivalence|homotopy equivalent]] to the [[mapping cone]] of the inclusion $(V \setminus X) \hookrightarrow V$ (hence to the pair $(V,V \setminus X)$ in the language of [[generalized (Eilenberg-Steenrod) cohomology]]). \end{prop} \begin{proof} The [[mapping cone]] of any map out of a [[CW-complex]] represents the [[homotopy cofiber]] of that map (\href{Introduction+to+Stable+homotopy+theory+--+P#StandardTopologicalMappingConeIsHomotopyCofiber}{exmpl.}). Moreover, transformation by (weak) homotopy equivalences between morphisms induces a (weak) homotopy equivalence on their homotopy fibers (\href{Introduction+to+Stable+homotopy+theory+--+P#FiberOfFibrationIsCompatibleWithWeakEquivalences}{prop.}). But we have such a weak homotopy equivalence, given by contracting away the fibers of the vector bundle: \begin{displaymath} \itexarray{ V\setminus X &\longrightarrow& V \\ {}^{\mathllap{\in W_{cl}}}\downarrow && \downarrow^{\mathrlap{\in W_{cl}}} \\ S(V) &\hookrightarrow& D(V) } \,. \end{displaymath} \end{proof} \hypertarget{behaviour_under_direct_sum_of_vector_bundles}{}\subsubsection*{{Behaviour under direct sum of vector bundles}}\label{behaviour_under_direct_sum_of_vector_bundles} \begin{prop} \label{ThomSpaceOfDirectSumAsQuotientOfThomSpacesOfPullbacks}\hypertarget{ThomSpaceOfDirectSumAsQuotientOfThomSpacesOfPullbacks}{} Let $V_1,V_2 \to X$ be two real [[vector bundles]]. Then the Thom space (def. \ref{ThomSpace}) of the [[direct sum of vector bundles]] $V_1 \oplus V_2 \to X$ is expressed in terms of the Thom space of the [[pullback bundles]] $V_2|_{D(V_1)}$ and $V_2|_{S(V_1)}$ of $V_2$ to the disk/sphere bundle of $V_1$ as \begin{displaymath} Th(V_1 \oplus V_2) \simeq Th(V_2|_{D(V_1)})/Th(V_2|_{S(V_1)}) \,. \end{displaymath} \end{prop} \begin{proof} Notice that \begin{enumerate}% \item $D(V_1 \oplus V_2) \simeq D(V_2|_{Int D(V_1)}) \cup S(V_1)$; \item $S(V_1 \oplus V_2) \simeq S(V_2|_{Int D(V_1)}) \cup Int D(V_2|_{S(V_1)})$. \end{enumerate} (Since a point at radius $r$ in $V_1 \oplus V_2$ is a point of radius $r_1 \leq r$ in $V_2$ and a point of radius $\sqrt{r^2 - r_1^2}$ in $V_1$.) \end{proof} \begin{prop} \label{SuspensionOfThomSpaces}\hypertarget{SuspensionOfThomSpaces}{} For $V$ a [[vector bundle]] then the Thom space (def. \ref{ThomSpace}) of $\mathbb{R}^n \oplus V$, the [[direct sum of vector bundles]] with the trivial rank $n$ vector bundle, is [[homeomorphism|homeomorphic]] to the [[smash product]] of the Thom space of $V$ with the $n$-[[sphere]] (the $n$-fold [[reduced suspension]]). \begin{displaymath} Th(\mathbb{R}^n \oplus V) \simeq S^n \wedge Th(V) = \Sigma^n Th(V) \,. \end{displaymath} \end{prop} \begin{proof} Apply prop. \ref{ThomSpaceOfDirectSumAsQuotientOfThomSpacesOfPullbacks} with $V_1 = \mathbb{R}^n$ and $V_2 = V$. Since $V_1$ is a trivial bundle, then \begin{displaymath} V_2|_{D(V_1)} \simeq V_2\times D^n \end{displaymath} (as a bundle over $X\times D^n$) and similarly \begin{displaymath} V_2|_{S(V_1)} \simeq V_2\times S^n \,. \end{displaymath} \end{proof} \begin{remark} \label{SuspensionPropertyOfThomSpacesInducesThomSpectra}\hypertarget{SuspensionPropertyOfThomSpacesInducesThomSpectra}{} Prop. \ref{SuspensionOfThomSpaces} implies that for every vector bundle $V$ the sequence of spaces $Th(\mathbb{R}^n \oplus V)$ forms a [[suspension spectrum]]: this is \emph{the [[Thom spectrum]]} of $V$. \end{remark} \begin{example} \label{ThomSpaceConstructionReducingToSuspension}\hypertarget{ThomSpaceConstructionReducingToSuspension}{} By prop. \ref{SuspensionOfThomSpaces} and remark \ref{ThomSpaceForRankZeroBundle} the Thom space (def. \ref{ThomSpace}) of a trivial vector bundle of rank $n$ is the $n$-fold [[suspension]] of the base space \begin{displaymath} \begin{aligned} Th(X \times \mathbb{R}^n) & \simeq S^n \wedge Th(X\times \mathbb{R}^0) \\ & \simeq S^n \wedge (X_+) \end{aligned} \,. \end{displaymath} Therefore a general Thom space may be thought of as a ``twisted [[reduced suspension]]'', with twist encoded by a vector bundle (or rather by its underlying [[spherical fibration]]). See at \emph{\href{Thom+spectrum#ForInfinityModuleBundles}{Thom spectrum -- For infinity-module bundles}} for more on this. Correspondingly the \emph{[[Thom isomorphism]]} for a given Thom space is a twisted version of the \emph{[[suspension isomorphism]]}. \end{example} \begin{prop} \label{ThomSpaceOfExternalProductOfVectorBundles}\hypertarget{ThomSpaceOfExternalProductOfVectorBundles}{} For $V_1 \to X_1$ and $V_2 \to X_2$ to vector bundles, let $V_1 \boxtimes V_2 \to X_1 \times X_2$ be the [[direct sum of vector bundles]] of their [[pullbacks]] to $X_1 \times X_2$. The corresponding Thom space is the [[smash product]] of the individual Thom spaces: \begin{displaymath} Th(V_1 \boxtimes V_2) \simeq Th(V_1) \wedge Th(V_2) \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} Prop. \ref{ThomSpaceOfExternalProductOfVectorBundles} induces on the [[Thom spectra]] of remark \ref{SuspensionPropertyOfThomSpacesInducesThomSpectra} the structure of [[ring spectra]]. \end{remark} \hypertarget{cwstructure}{}\subsubsection*{{CW-structure}}\label{cwstructure} If the base space of the vector bundle carries the structure of a [[CW-complex]], then its Thom space (def. \ref{ThomSpace}) canonically inherits the structure of a CW-complex, too: \begin{lemma} \label{ThomSpaceCWStructure}\hypertarget{ThomSpaceCWStructure}{} Let $V \to X$ be a [[vector bundle]] of [[rank]] $n \geq 1$. over a [[CW-complex]] $X$. Then $Th(V)$ has the structure of a [[CW-complex]] with \begin{enumerate}% \item $S(E)/S(E)$ the only 0-cell \item precisely one $(n+k)$-cell $D^{k+n}\to Th(V)$ for each $k$-cell $D^k \to X$ of $X$, given as the [[pullback]] \begin{displaymath} \itexarray{ D^{k+n} &\longrightarrow& D(V) &\longrightarrow& D(V)/S(V) = Th(V) \\ \downarrow &(pb)& \downarrow \\ D^k &\longrightarrow& X } \,. \end{displaymath} \end{enumerate} \end{lemma} (e.g. \hyperlink{Cruz04}{Cruz 04, lemma 6}) In particular, $Th(V)$ has a single $n$-cell and an $(n+1)$-cell for each 1-cell of $X$. There are no cells in $Th(C)$ between dimension $0$ and $n$. The cellular boundary of an $(n+1)$-cell is 0 if $V$ is orientable over the corresponding 1-cell of $X$, and it is twice the $n$-cell in the opposite case. Thus $H^n(Th(V);\mathbb{Z})$ is $\mathbb Z$ if $V$ is orientable and $0$ if $V$ is non-orientable. In the orientable case a generator of $H^n(Th(V);{\mathbb Z})$ restricts to a generator of $H^n(S^n;\mathbb{Z})$ in the ``fiber'' $S^n$ of $Th(V)$ over the 0-cell of $X$, hence the same is true for all the ``fibers'' $S^n$ and so one has a [[Thom class]]. (\href{http://mathoverflow.net/a/107864/381}{MO discussion}) \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} \begin{remark} \label{OrdinaryCohomologyOfThomSpaceInLowDegree}\hypertarget{OrdinaryCohomologyOfThomSpaceInLowDegree}{} Given a [[vector bundle]] $V \to X$ of [[rank]] $n$, then the [[reduced cohomology|reduced]] [[ordinary cohomology]] of its [[Thom space]] $Th(V)$ (def. \ref{ThomSpace}) vanishes in degrees $\lt n$: \begin{displaymath} \tilde H^{\bullet \lt n}(Th(V)) \simeq H^{\bullet \lt n}(D(V), S(V)) \simeq 0 \,. \end{displaymath} \end{remark} \begin{proof} Consider the [[long exact sequence]] of [[relative cohomology]] (\href{generalized+cohomology#ExactnessUnreduced}{here}) \begin{displaymath} \cdots \to H^{\bullet-1}(D(V)) \overset{i^\ast}{\longrightarrow} H^{\bullet-1}(S(V)) \longrightarrow H^\bullet(D(V), S(V)) \longrightarrow H^{\bullet}(D(V)) \overset{i^\ast}{\longrightarrow} H^{\bullet}(S(V)) \to \cdots \,. \end{displaymath} Since the cohomology in degree $k$ only depends on the $k$-skeleton, and since for $k \lt n$ the $k$-skeleton of $S(V)$ equals that of $X$, and since $D(V)$ is even homotopy equivalent to $X$, the morhism $i^\ast$ is an isomorphism in degrees lower than $n$. Hence by exactness of the sequence it follows that $H^{\bullet \lt n}(D(V),S(V)) = 0$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cobordism theory]] \item [[one-point compactification]] \item [[Thom spectrum]] \item [[Thom isomorphism]] \item [[projective bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[Thom isomorphism]] for Thom spaces was originally found in \begin{itemize}% \item [[René Thom]], \emph{Quelques propri\'e{}t\'e{}s globales des vari\'e{}t\'e{}s diff\'e{}rentiables} Comm. Math. Helv. , 28 (1954) pp. 17--86 \end{itemize} For general discussion see \begin{itemize}% \item [[Michael Atiyah]], \emph{Thom complexes}, Proc. London Math. Soc. \textbf{11} (1961) pp. 291--310 \item [[Yuli Rudyak]], \emph{On Thom spectra, orientability, and cobordism}, Springer 1998 \href{http://books.google.hr/books?isbn=3540620435}{googB} \item [[eom]], \emph{\href{http://eom.springer.de/t/t092680.htm}{Thom space}} \item [[Dale Husemöller]], \emph{Fibre bundles} , McGraw-Hill (1966) \item myyn.org \href{http://myyn.org/m/article/thom-space}{Thom space}, \href{http://myyn.org/m/article/thom-class}{Thom class}, \href{http://myyn.org/m/article/thom-isomorphism-theorem}{Thom isomorphism theorem} \end{itemize} See also \begin{itemize}% \item [[Robert Stong]], \emph{Notes on cobordism theory} , Princeton Univ. Press (1968) \item W.B. Browder, \emph{Surgery on simply-connected manifolds} , Springer (1972) \item Martin Vito Cruz, \emph{An introduction to cobordism}, 2004 (\href{https://math.berkeley.edu/~hutching/teach/215b-2004/vitocruz.pdf}{pdf}) \end{itemize} [[!redirects Thom spaces]] \end{document}