\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Thom spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cobordism_theory}{}\paragraph*{{Cobordism theory}}\label{cobordism_theory} [[!include cobordism theory -- contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForVectorBundles}{For vector bundles}\dotfill \pageref*{ForVectorBundles} \linebreak \noindent\hyperlink{ForSphereBundles}{For spherical fibrations}\dotfill \pageref*{ForSphereBundles} \linebreak \noindent\hyperlink{ForInfinityModuleBundles}{For $(\infty,1)$-module bundles}\dotfill \pageref*{ForInfinityModuleBundles} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RingSpectrumStructure}{Ring spectrum structure}\dotfill \pageref*{RingSpectrumStructure} \linebreak \noindent\hyperlink{relation_to_the_cobordism_ring}{Relation to the cobordism ring}\dotfill \pageref*{relation_to_the_cobordism_ring} \linebreak \noindent\hyperlink{AsDualObject}{As a dual in the stable homotopy category}\dotfill \pageref*{AsDualObject} \linebreak \noindent\hyperlink{AsTheUniversalSphericalFibration}{As the universal spherical fibration, from the $J$-homomorphism}\dotfill \pageref*{AsTheUniversalSphericalFibration} \linebreak \noindent\hyperlink{AsTheInfiniteCobordismCategory}{As the infinite cobordism category}\dotfill \pageref*{AsTheInfiniteCobordismCategory} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_dual_objects_in_the_stable_homotopy_category}{As dual objects in the stable homotopy category}\dotfill \pageref*{as_dual_objects_in_the_stable_homotopy_category} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The universal real Thom spectrum [[MO]] is a [[connective spectrum]] whose associated [[infinite loop space]] is the [[classifying space]] for [[cobordism]]: \begin{displaymath} \Omega^\infty M O \simeq \vert Cob_\infty \vert . \end{displaymath} In particular, $\pi_n M O$ is naturally identified with the set of [[cobordism classes]] of [[closed manifold|closed]] $n$-[[manifolds]] ([[Thom's theorem]]). More abstractly, [[MO]] is the [[homotopy colimit]] of the [[J-homomorphism]] in [[Spectra]] \begin{displaymath} M O \simeq \underset{\longrightarrow}{\lim}(B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \to Spectra) \end{displaymath} hence the ``total space'' of the universal [[spherical fibration]] on the [[classifying space]] $B O$ for (stable) [[real vector bundles]]. Given this, for any [[topological group]] $G$ equipped with a [[homomorphism]] to the [[orthogonal group]] there is a corresponding Thom spectrum \begin{displaymath} M G \simeq \underset{\longrightarrow}{\lim}(B G\to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \to Spectra) \,. \end{displaymath} This is considered particularly for the stages $G$ in the [[Whitehead tower]] of the [[orthogonal group]], where it yields $M$[[Spin group|Spin]], $M$[[String group]], etc. All these Thom spectra happen to naturally have the structure of [[E-∞ rings]] and $E_\infty$-ring homomorphisms $M O\to E$ into another $E_\infty$-ring $E$ are equivalently universal [[orientation in generalized cohomology|orientations in E-cohomology]]. On [[homotopy groups]] these are [[genera]] with [[coefficients]] in the underlying ring $\pi_\bullet(E)$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ForVectorBundles}{}\subsubsection*{{For vector bundles}}\label{ForVectorBundles} First recall the following two basic facts about the construction of [[Thom spaces]]. See at \emph{[[Thom space]]} \href{Thom+space#SuspensionOfThomSpaces}{this prop.}. \begin{prop} \label{SuspensionOfThomSpaces}\hypertarget{SuspensionOfThomSpaces}{} For $V \to X$ a [[vector bundle]], there is a [[homeomorphism]] \begin{displaymath} Th(\mathbb{R}^n \oplus V) \simeq S^n \wedge Th(V) = \Sigma^n Th(V) \end{displaymath} between, on the one hand, the [[Thom space]] of the [[direct sum of vector bundles]] of $V$ with the trivial [[vector bundle]] of [[rank]] $n$ and, on the other, the $n$-fold [[reduced suspension]] of the [[Thom space]] of $V$. \end{prop} \begin{prop} \label{ThomSpaceOfExternalProductOfVectorBundles}\hypertarget{ThomSpaceOfExternalProductOfVectorBundles}{} For $V_1 \to X_1$ and $V_2 \to X_2$ to vector bundles, let $V_1 \boxtimes V_2 \to X_1 \times X_2$ be the [[direct sum of vector bundles]] of their [[pullbacks]] to $X_1 \times X_2$. The corresponding Thom space is the [[smash product]] of the individual Thom spaces: \begin{displaymath} Th(V_1 \boxtimes V_2) \simeq Th(V_1) \wedge Th(V_2) \,. \end{displaymath} \end{prop} Prop. \ref{SuspensionOfThomSpaces} will give rise to universal Thom spectra in the following, while prop. \ref{ThomSpaceOfExternalProductOfVectorBundles} will give them the struture of [[ring spectra]]. \begin{defn} \label{ThomSpectrumOfAVectorBundle}\hypertarget{ThomSpectrumOfAVectorBundle}{} For $V \to X$ a [[vector bundle]], its \textbf{Thom spectrum} is the [[suspension spectrum]] $\Sigma^\infty Th(V)$ of the [[Thom space]] of $V$. By prop. prop. \ref{SuspensionOfThomSpaces} this may be written as \begin{displaymath} (\Sigma^\infty Th(V)) \simeq Th(\mathbb{R}^n \oplus V) \end{displaymath} with structure maps are the equivalences \begin{displaymath} \sigma_n \;\colon\; \Sigma Th(\mathbb{R}^n \oplus V) \stackrel{\simeq}{\longrightarrow} Th(\mathbb{R}^{n+1} \oplus V) \,. \end{displaymath} \end{defn} \begin{prop} \label{PullbackOfUniversalOnBundleUnderCoordinateRestriction}\hypertarget{PullbackOfUniversalOnBundleUnderCoordinateRestriction}{} For each $n \in \mathbb{N}$ the [[pullback]] of the [[rank]]-$(n+1)$ [[universal vector bundle]] to the [[classifying space]] of rank $n$ vector bundles is the [[direct sum of vector bundles]] of the rank $n$ universal vector bundle with the trivial rank-1 bundle: there is a [[pullback]] [[diagram]] of [[topological spaces]] of the form \begin{displaymath} \itexarray{ \mathbb{R}\oplus (E O(n)\underset{O(n)}{\times} \mathbb{R}^n) &\longrightarrow& E O(n+1) \underset{O(n+1)}{\times} \mathbb{R}^{n+1} \\ \downarrow &(pb)& \downarrow \\ B O(n) &\longrightarrow& B O(n+1) } \,, \end{displaymath} where the bottom morphism is the canonical one (\href{classifying+space#InclusionOfBOnIntoBOnPlusOne}{def.}). \end{prop} (e.g. \hyperlink{Kochmann96}{Kochmann 96, p. 25}) \begin{proof} For each $k \in \mathbb{N}$, $k \geq n$ there is such a pullback of the canonical vector bundles over [[Grassmannians]] \begin{displaymath} \itexarray{ \left\{ {V_{n}\subset \mathbb{R}^k, } \atop {v \in V_n, v_{n+1} \in \mathbb{R}} \right\} &\longrightarrow& \left\{ {V_{n+1} \subset \mathbb{R}^{k+1}}, \atop v \in V_{n+1} \right\} \\ \downarrow && \downarrow \\ Gr_n(\mathbb{R}^k) &\longrightarrow& Gr_{n+1}(\mathbb{R}^{k+1}) } \end{displaymath} where the bottom morphism is the canonical inclusion (\href{classifying+space#InclusionOfBOnIntoBOnPlusOne}{def.}). Under taking [[colimit]] over $k$, this produces the claimed pullback. \end{proof} \begin{defn} \label{}\hypertarget{}{} The $n$-fold looping of the Thom spectrum, according to def. \ref{ThomSpectrumOfAVectorBundle}, of the rank-$n$ [[universal vector bundle]] is written \begin{displaymath} M O(n) \coloneqq \Sigma^{-n} \Sigma^\infty Th( E O(n) \underset{O(n)}{\times} \mathbb{R}^n ) \,. \end{displaymath} The image of the top horizontal maps in prop. \ref{PullbackOfUniversalOnBundleUnderCoordinateRestriction} under $\Sigma^{-n-1}Th(-)$ are, via prop. \ref{SuspensionOfThomSpaces}, maps of the form \begin{displaymath} M O(n) \longrightarrow M O(n+1) \end{displaymath} The [[homotopy colimit]] over these maps is the universal Thom spectrum: \begin{displaymath} M O \coloneqq {\lim_\to}_n M O(n) \,. \end{displaymath} \end{defn} More explicitly: \begin{defn} \label{UniversalThomSpectrum}\hypertarget{UniversalThomSpectrum}{} As a [[sequential spectrum]], the \emph{universal Thom spectrum} $M O$ is represented by the [[sequential prespectrum]] whose $n$th component space is the [[Thom space]] \begin{displaymath} (M O)_n \coloneqq Th(E O(n)\underset{O(n)}{\times}\mathbb{R}^n) \end{displaymath} of the rank-$n$ [[universal vector bundle]], and whose structure maps are the image under the [[Thom space]] functor $Th(-)$ of the top morphisms in prop. \ref{PullbackOfUniversalOnBundleUnderCoordinateRestriction}, via the homeomorphisms of prop. \ref{SuspensionOfThomSpaces}: \begin{displaymath} \sigma_n \;\colon\; \Sigma (M O)_n \simeq Th(\mathbb{R}\oplus (E O(n)\underset{O(n)}{\times} \mathbb{R}^n)) \stackrel{}{\longrightarrow} Th(E O(n+1) \underset{O(n+1)}{\times} \mathbb{R}^{n+1}) = (M O)_{n+1} \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} As an [[orthogonal ring spectrum]], the universal [[Thom spectrum]] $M O$ has \begin{itemize}% \item component spaces \begin{displaymath} (M O)_V \coloneqq E O(V)_+ \underset{O(V)}{\wedge} S^V \end{displaymath} the [[Thom spaces]] of the [[universal vector bundle]] with fiber $V$; \item left $O(V)$-action induced by the remaining canonical left action of $E O(V)$; \item multiplication maps \begin{displaymath} (E O(V_1)_+ \underset{O(V_1)}{\wedge} S^{V_1}) \wedge (E O(V_2)_+ \underset{O(V_2)}{\wedge} S^{V_2} \longrightarrow E O(V_1 \oplus V_2)_+ \underset{O(V_1 \oplus V_2)}{\wedge} S^{V_1 \oplus V_2} \end{displaymath} induced via prop. \ref{ThomSpaceOfExternalProductOfVectorBundles} \item unit maps given by \begin{displaymath} S^V \simeq O(V)_+ \wedge_{O(V)} S^V \longrightarrow E O(V)_+ \wedge_{O(V)} S^V \end{displaymath} induced by the fiber inclusion $O(V) \to E O(V)$. \end{itemize} \end{defn} For discussion of the refinement of the Thom spectrum $M O$ to a [[symmetric spectrum]] see (\hyperlink{HoveyShipleySmith00}{Hovey-Shipley-Smith 00, example 6.2.3}, \hyperlink{Schwede12}{Schwede 12, Example I.2.8}). For the refinement to an [[orthogonal spectrum]] and [[globally equivariant spectrum]] see (\hyperlink{Schwede15}{Schwede 15, section V.4}). More generally, there are universal Thom spectra associated with any other tangent structure (``[[(B,f)]-structure]''), notably for the orthogonal group replaced by the [[special orthogonal groups]] $SO(n)$, or the [[spin groups]] $Spin(n)$, or the [[string 2-group]] $String(n)$, or the [[fivebrane 6-group]] $Fivebrane(n)$,\ldots{}, or any level in the [[Whitehead tower]] of $O(n)$. To any of these groups there corresponds a Thom spectrum (denoted, respectively, $M SO$, $M Spin$, $M String$, $M Fivebrane$, etc.), which is in turn related to oriented cobordism, spin cobordism, string cobordism, et cetera. Recall: \begin{defn} \label{BfStructure}\hypertarget{BfStructure}{} A [[(B,f)-structure]] $\mathcal{B}$, is a system of [[Serre fibrations]] \begin{displaymath} \itexarray{ B_n \\ \downarrow^{\mathrlap{f_n}} \\ B O(n) } \end{displaymath} for $n \in \mathbb{N}$, equipped with maps $j_n \colon B_n \to B_{n+1}$ covering the canonical maps $i_n \colon B O(n) \to B O(n+1)$ ((\href{classifying+space#InclusionOfBOnIntoBOnPlusOne}{def.})) in that there are [[commuting squares]] \begin{displaymath} \itexarray{ B_n &\overset{j_n}{\longrightarrow}& B_{n+1} \\ \downarrow^{\mathrlap{f_n}} && \downarrow^{\mathrlap{f_{n+1}}} \\ B O(n) &\overset{i_n}{\longrightarrow}& B O(n+1) } \,. \end{displaymath} Similarly, an \textbf{$S^2$-$(B,f)$-structure} is a compatible system \begin{displaymath} f_{2n} \colon B_{2n} \longrightarrow B O(2n) \end{displaymath} indexed only on the even natural numbers. \end{defn} \begin{defn} \label{VectorBundleAssociatedWithBfStructure}\hypertarget{VectorBundleAssociatedWithBfStructure}{} Given a [[(B,f)-structure]] $\mathcal{B}$ (def. \ref{BfStructure}), write \begin{displaymath} E^{\mathcal{B}}_n \coloneqq f_n^\ast ( E O(n) \underset{O(n)}{\times} \mathbb{R}^n ) \end{displaymath} for the [[pullback]] of the rank-$n$ [[universal vector bundle]] from $B O(n)$ to $B_n$ along $f_n$. \end{defn} Observe that the analog of prop. \ref{PullbackOfUniversalOnBundleUnderCoordinateRestriction} still holds: \begin{prop} \label{PullbackOfUniversalBfBundleUnderCoordinateRestriction}\hypertarget{PullbackOfUniversalBfBundleUnderCoordinateRestriction}{} Given a [[(B,f)-structure]] $\mathcal{B}$ (def. \ref{BfStructure}), then the pullback of its rank-$(n+1)$ vector bundle $E^{\mathcal{B}}_{n+1}$ (def. \ref{VectorBundleAssociatedWithBfStructure}) along the map $j_n \colon B_n \to B_{n+1}$ is the [[direct sum of vector bundles]] of the rank-$n$ bundle $E^{\mathcal{B}}_n$ with the trivial rank-1-bundle: there is a pullback square \begin{displaymath} \itexarray{ \mathbb{R} \oplus E^{\mathcal{B}}_n &\longrightarrow& E^{\mathcal{B}}_{n+1} \\ \downarrow &(pb)& \downarrow \\ B_n &\underset{j_n}{\longrightarrow}& B_{n+1} } \,. \end{displaymath} \end{prop} \begin{proof} Unwinding the definitions, the pullback in question is \begin{displaymath} \begin{aligned} j_n^\ast E^{\mathcal{B}}_{n+1} & = j_n^\ast f_{n+1}^\ast (E O(n+1)\underset{O(n+1)}{\times} \mathbb{R}^{n+1}) \\ & \simeq (j_n \circ f_{n+1})^\ast (E O(n+1)\underset{O(n+1)}{\times} \mathbb{R}^{n+1}) \\ & \simeq ( f_n \circ i_n )^\ast (E O(n+1)\underset{O(n+1)}{\times} \mathbb{R}^{n+1}) \\ & \simeq f_n^\ast i_n^\ast (E O(n+1)\underset{O(n+1)}{\times} \mathbb{R}^{n+1}) \\ & \simeq f_n^\ast (\mathbb{R} \oplus (E O(n)\underset{O(n)}{\times} \mathbb{R}^{n})) \\ &\simeq \mathbb{R} \oplus E^{\mathcal{B}_n} \,, \end{aligned} \end{displaymath} where the second but last step is due to prop. \ref{PullbackOfUniversalOnBundleUnderCoordinateRestriction}. \end{proof} \begin{defn} \label{}\hypertarget{}{} Given a [[(B,f)-structure]] $\mathcal{B}$ (def. \ref{BfStructure}), its Thom spectrum $M \mathcal{B}$ is, as a [[sequential prespectrum]], given by component spaces being the [[Thom spaces]] of the $\mathcal{B}$-associated vector bundles of def. \ref{VectorBundleAssociatedWithBfStructure} \begin{displaymath} (M \mathcal{B})_n \coloneqq Th(E^{\mathcal{B}}_n) \end{displaymath} and with structure maps given via prop. \ref{SuspensionOfThomSpaces} by the top maps in prop. \ref{PullbackOfUniversalBfBundleUnderCoordinateRestriction}: \begin{displaymath} \sigma_n \;\colon\; \Sigma (M \mathcal{B})_n = \Sigma Th(E^{\mathcal{E}}_n) \simeq Th(\mathbb{R}\oplus E^{\mathcal{E}}_n) \longrightarrow Th(E^{\mathcal{E}}_{n+1}) = (M \mathcal{B})_{n+1} \,. \end{displaymath} Similarly for a $(B,f)$-structure indexed on the even natural numbers, there is the corresponding Thom spectrum as an $S^2$-sequential spectrum (\href{model+structure+on+topological+sequential+spectra#SequentialS2Spectra}{def.}). If $B_n = B G_n$ for some natural system of groups $G_n \to O(n)$, then one usually writes $M G$ for $M \mathcal{B}$. For instance $M SO$, $M Spin$, $M U$ etc. If the $(B,f)$-structure is multiplicative (def. \ref{BfStructure}), then the Thom spectrum $M \mathcal{B}$ canonical becomes a [[ring spectrum]]: the multiplication maps $B_{n_1} \times B_{n_2}\to B_{n_1 + n_2}$ are covered by maps of vector bundles \begin{displaymath} E^{\mathcal{B}}_{n_1} \boxtimes E^{\mathcal{B}}_{n_2} \longrightarrow E^{\mathcal{B}}_{n_1 + n_2} \end{displaymath} and under forming [[Thom spaces]] this yields, by prop. \ref{ThomSpaceOfExternalProductOfVectorBundles}, maps \begin{displaymath} (M \mathcal{B})_{n_1} \wedge (M \mathcal{B})_{n_2} \longrightarrow (M \mathcal{B})_{n_1 + n_2} \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} The Thom spectrum of the \emph{[[framing]] structure} (\href{G-structure#ExamplesOfBfStructures}{exmpl.}) is equivalently the [[sphere spectrum]] \begin{displaymath} M 1 \simeq \mathbb{S} \,. \end{displaymath} Because in this case $B_n \simeq \ast$ and so $E^{\mathcal{B}}_n \simeq \mathbb{R}^n$, whence $Th(E^{\mathcal{B}}_n) \simeq S^n$. \end{example} \hypertarget{ForSphereBundles}{}\subsubsection*{{For spherical fibrations}}\label{ForSphereBundles} \begin{defn} \label{ThomSpectrumForSphericalFibrations}\hypertarget{ThomSpectrumForSphericalFibrations}{} (\ldots{}) \end{defn} \hypertarget{ForInfinityModuleBundles}{}\subsubsection*{{For $(\infty,1)$-module bundles}}\label{ForInfinityModuleBundles} We discuss the Thom spectrum construction for general [[(∞,1)-module bundles]]. \begin{prop} \label{}\hypertarget{}{} There is pair of [[adjoint (∞,1)-functors]] \begin{displaymath} (\Sigma^\infty \Omega^\infty \dashv gl_1) \colon E_\infty Rings \stackrel{\overset{\Sigma^\infty \Omega^\infty}{\leftarrow}}{\underset{gl_1}{\to}} Spec_{con} \,, \end{displaymath} where $(\Sigma^\infty \dashv \Omega^\infty) : Spec \to Top$ is the [[stabilization]] adjunction between [[Top]] and [[Spec]] ($\Sigma^\infty$ forms the [[suspension spectrum]]), restricted to connective spectra. The [[right adjoint]] is the \emph{[[∞-group of units]]}-[[(∞,1)-functor]], see there for more details. \end{prop} This is (\hyperlink{ABGHR}{ABGHR, theorem 2.1/3.2}). \begin{remark} \label{}\hypertarget{}{} Here $gl_1$ forms the ``[[general linear group]]-of rank 1''-spectrum of an [[E-∞ ring]]: its [[∞-group of units]]``. The adjunction is the generalization of the adjunction \begin{displaymath} (\mathbb{Z}[-] \dashv GL_1) : CRing \stackrel{\overset{\mathbb{Z}[1]}{\leftarrow}}{\underset{GL_1}{\to}} Ab \end{displaymath} between [[CRing]] and [[Ab]], where $\mathbb{Z}[-]$ forms the [[group ring]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} b gl_1(R) \coloneqq \Sigma gl_1(R) \end{displaymath} for the [[suspension]] of the group of units $gl_1(R)$. \end{defn} This plays the role of the [[classifying space]] for $gl_1(R)$-[[principal ∞-bundle]]s. For $f : b \to b gl_1(R)$ a morphism (a [[cocycle]] for $gl_1(R)$-bundles) in [[Spec]], write $p \to b$ for the corresponding bundle: the [[homotopy fiber]] \begin{displaymath} \itexarray{ p &\to& * \\ \downarrow && \downarrow \\ b &\stackrel{f}{\to}& b gl_1(R) } \,. \end{displaymath} Given a $R$-algebra $A$, hence an [[A-∞ algebra]] over $R$, exhibited by a morphism $\rho : R \to A$, the composite \begin{displaymath} \rho(f) : b \stackrel{f}{\to} b gl_1(R) \stackrel{\rho}{\to} b gl_1(A) \end{displaymath} is that for the corresponding [[associated ∞-bundle]]. We write capital letters for the underlying spaces of these spectra: \begin{displaymath} P \coloneqq \Sigma^\infty \Omega^\infty p \end{displaymath} \begin{displaymath} B \coloneqq \Sigma^\infty \Omega^\infty b \end{displaymath} \begin{displaymath} GL_1(R) \coloneqq \Sigma^\infty \Omega^\infty gl_1(R) \end{displaymath} \begin{defn} \label{GeneralThomSpectrum}\hypertarget{GeneralThomSpectrum}{} The \textbf{Thom spectrum} $M f$ of $f : b \to gl_1(R)$ is the [[(∞,1)-pushout]] \begin{displaymath} \itexarray{ \Sigma^\infty \Omega^\infty R &\to& R \\ \downarrow && \downarrow \\ \Sigma^\infty \Omega^\infty p &\to& M f } \,, \end{displaymath} hence the [[derived functor|derived]] [[smash product]] \begin{displaymath} M f \simeq P \wedge_{GL_1(R)} R \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This means that a morphism $M f \to A$ is an $GL_1(R)$-equivariant map $P \to A$. Notice that for $R = \mathbb{C}$ the [[complex number]]s, $B \to GL_1(R)$ is the cocycle for a [[circle bundle]] $P \to B$. A $U(1)$-equivariant morphism $P \to A$ to some [[representation]] $A$ is equivalently a [[section]] of the A-[[associated bundle]]. Therefore the Thom spectrum may be thought of as co-[[representable functor|representing]] spaces of sections of associated bundles ``$Hom(M f, A) \simeq \Gamma(P \wedge_{GL_1(R)} A)$''. \end{remark} This is made precise by the following statement. \begin{prop} \label{}\hypertarget{}{} We have an [[(∞,1)-pullback]] diagram \begin{displaymath} \itexarray{ E_\infty Alg_R(M f, A) &\stackrel{}{\to}& (...) \\ \downarrow && \downarrow \\ * &\stackrel{}{\to}& (...) } \end{displaymath} \end{prop} This is (\hyperlink{ABGHR}{ABGHR, theorem 2.10}). This definition does subsume the \href{ForSphereBundles}{above} definition of Thom spectra for [[sphere bundles]] (hence also that for [[vector bundles]], by removing their [[zero section]]): \begin{prop} \label{}\hypertarget{}{} Let $R = S$ be the [[sphere spectrum]]. Then for $f \colon b \to gl_1(S)$ a cocycle for an $S$-bundle, \begin{displaymath} G \coloneqq \Omega^\infty g \colon B \to B GL_1(S) \end{displaymath} is the classifying map for a [[spherical fibration]] over $B \in Top$. The Thom spectrum $M f$ of def. \ref{GeneralThomSpectrum} is equivalent to the Thom spectrum of the spherical fibration, according to def. \ref{ThomSpectrumForSphericalFibrations}. \end{prop} This is in (\hyperlink{ABGHR}{ABGHR, section 8}). Equivalently the Thom spectrum is characterized as follows: \begin{defn} \label{ThomSpectrumAsHomotopyColimit}\hypertarget{ThomSpectrumAsHomotopyColimit}{} For $\chi \colon X \to R Line$ a map to the [[∞-group]] of $R$-[[(∞,1)-lines]] inside $R Mod$, the corresponding Thom spectrum is the [[(∞,1)-colimit]] \begin{displaymath} \Gamma(\chi) \coloneqq \underset{\rightarrow}{\lim} \left( X \stackrel{\chi}{\to} Pic(R) \hookrightarrow R Mod \right) \,. \end{displaymath} This construction evidently extendes to an [[(∞,1)-functor]] \begin{displaymath} \Gamma \colon \infty Grpd_{/R Line} \to R Mod \,. \end{displaymath} \end{defn} This is (\hyperlink{ABG10}{Ando-Blumberg-Gepner 10, def. 4.1}), reviewed also as (\hyperlink{Wilson13}{Wilson 13, def. 3.3}). \begin{remark} \label{}\hypertarget{}{} This is the $R$-[[(∞,1)-module]] of [[sections]] of the [[(∞,1)-module bundle]] classified by $X \stackrel{\chi}{\to} Pic(R) \hookrightarrow R Mod$. By the [[universal property]] of the [[(∞,1)-colimit]] we have for $\underline{R} \colon X \to R Mod$ the trivial $R$-bundle that \begin{displaymath} Hom_{[X, R Mod]}(\chi, \underline{R}) \simeq Hom_{R Mod}(\Gamma(\chi), R) \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} The section/Thom spectrum functor is the left [[(∞,1)-Kan extension]] of the canonical embedding $R Line \hookrightarrow R Mod$ along the [[(∞,1)-Yoneda embedding]] \begin{displaymath} R Line \hookrightarrow [R Line^{op}, \infty Grpd] \simeq \infty Grpd_{/R Line} \end{displaymath} (where the [[equivalence of (∞,1)-categories]] on the right is given by the [[(∞,1)-Grothendieck construction]]). In other words, it is the essentially unique [[(∞,1)-colimit]]-preserving [[(∞,1)-functor]] $\infty Grpd_{/ R Line} \to R Mod$ which restricts along this inclusion to the canonical embedding. \end{prop} This observation appears as (\hyperlink{Wilson13}{Wilson 13, prop. 4.4}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RingSpectrumStructure}{}\subsubsection*{{Ring spectrum structure}}\label{RingSpectrumStructure} The universal Thom spectrum, def. \ref{UniversalThomSpectrum}, naturally inherits the structure of a [[ring spectrum]] as follows. \begin{prop} \label{}\hypertarget{}{} There are canonical commuting diagrams \begin{displaymath} \itexarray{ ( E (O(k)\times O(\ell))\underset{O(k)\times O(\ell)}{\times}) \mathbb{R}^k \oplus \mathbb{R}^\ell &\longrightarrow& E O(k+\ell)\underset{O(k + ell)}{\times} \mathbb{R}^{k+\ell} \\ \downarrow && \downarrow \\ B O(k)\times B O(\ell) &\stackrel{}{\longrightarrow}& B O(k + \ell) } \,. \end{displaymath} Applying the [[Thom space]] functor to the top morphisms and using prop. \ref{ThomSpaceOfExternalProductOfVectorBundles} gives morphisms \begin{displaymath} M O(k) \wedge M O(\ell) \longrightarrow M O(k + \ell) \end{displaymath} that combine to a [[functor with smash products]] and hence give $M O$ the structure of a [[ring spectrum]]. \end{prop} More abstractly, sufficient condition for a Thom spectrum of an ∞-module bundle (as \hyperlink{ForInfinityModuleBundles}{above}) to have [[E-∞ ring]] structure is that it arises, as the [[(∞,1)-colimit]] of a homomorphism of [[E-∞ spaces]] $B \to A Line$ (\hyperlink{ABG10}{ABG 10, prop.6.21}). \hypertarget{relation_to_the_cobordism_ring}{}\subsubsection*{{Relation to the cobordism ring}}\label{relation_to_the_cobordism_ring} \begin{prop} \label{}\hypertarget{}{} The [[cobordism ring|cobordism group]] of un[[oriented]] $n$-[[dimension]]al [[manifold]]s is [[natural isomorphism|naturally isomorphic]] to the $n$th [[homotopy group]] of the Thom spectrum $M O$. That is, there is a natural isomorphism \begin{displaymath} \Omega^{un}_\bullet \simeq \pi_\bullet M O \coloneqq {\lim_{\to}}_{k \to \infty} \pi_{n+k} M O(k) \,. \end{displaymath} \end{prop} This is a seminal result due to (\hyperlink{Thom54}{Thom 54}), whose proof proceeds by the [[Pontryagin-Thom construction]]. The presentation of the following proof follows (\hyperlink{Francis3}{Francis, lecture 3}). \begin{proof} We first construct a map $\Theta : \Omega_n^{un} \to \pi_n M O$. Given a class $[X] \in \Omega_n^{un}$ we can choose a representative $X \in$ [[SmthMfd]] and a [[closed embedding]] $\nu$ of $X$ into the [[Cartesian space]] $\mathbb{R}^{n+k}$ of sufficiently large [[dimension]]. By the [[tubular neighbourhood theorem]] $\nu$ factors as the embedding of the [[zero section]] into the [[normal bundle]] $N_\nu$ followed by an [[open embedding]] of $N_\nu$ into $\mathbb{R}^{n+k}$ \begin{displaymath} \itexarray{ X &&\stackrel{\nu}{\hookrightarrow}&& \mathbb{R}^{n+k} \\ & \searrow && \nearrow_{\mathrlap{i}} \\ && N_\nu } \,. \end{displaymath} Now use the [[Pontrjagin-Thom construction]] to produce an element of the [[homotopy group]] first in the [[Thom space]] $Th(N_\nu)$ of $N_\nu$ and then eventually in $M O$. To that end, let \begin{displaymath} \mathbb{R}^{n+k} \to (\mathbb{R}^{n+k})^+ \simeq S^{n+k} \end{displaymath} be the map into the [[one-point compactification]]. Define a map \begin{displaymath} t : S^{n+k} \simeq (\mathbb{R}^{n+k})^+ \to Disk(N_\nu)/Sphere(N_\nu) \simeq Th(N_\nu) \end{displaymath} by sending points in the image of $Disk(N_\nu)$ under $i$ to their preimage, and all other points to the collapsed point $Sphere(N_\nu)$. This defines an element in the [[homotopy group]] $\pi_{n+k}(Th(N_\nu))$. To turn this into an element in the homotopy group of $M O$, notice that since $N_\nu$ is a [[vector bundle]] of [[rank]] $k$, it is the [[pullback]] by a map $\mu$ of the universal rank $k$ vector bundle $\gamma_k \to B O(k)$ \begin{displaymath} \itexarray{ N_\nu \simeq \mu^* \gamma_k &\to& \gamma_k \\ \downarrow && \downarrow \\ X &\stackrel{\mu}{\to}& B O(k) } \,. \end{displaymath} By forming Thom spaces the top map induces a map \begin{displaymath} Th(N_\nu) \to Th(\gamma^k) =: M O(k) \,. \end{displaymath} Its composite with the map $t$ constructed above gives an element in $\pi_{n+k} M O(k)$ \begin{displaymath} S^{n+k} \stackrel{t}{\to} Th(N_\nu) \to Th(\gamma^k) \simeq M O(k) \end{displaymath} and by $\pi_{n+k} M O(k) \to {\lim_\to}_k \pi_{n+k} M O(k) =: \pi_n M O$ this is finally an element \begin{displaymath} \Theta : [X] \mapsto (S^{n+k} \stackrel{t}{\to} Th(N_\nu) \to Th(\gamma^k) \simeq M O(k)) \in \pi_n M O \,. \end{displaymath} We show now that this element does not depend on the choice of embedding $\nu : X \to \mathbb{R}^{n+k}$. (\ldots{}) Finally, to show that $\Theta$ is an [[isomorphism]] by constructing an inverse. For that, observe that the [[sphere]] $S^{n+k}$ is a [[compact topological space]] and in fact a [[compact object]] in [[Top]]. This implies that every map $f$ from $S^{n+k}$ into the [[filtered colimit]] \begin{displaymath} Th(\gamma^k) \simeq {\lim_\to}_s Th(\gamma^k_s) \,, \end{displaymath} factors through one of the terms as \begin{displaymath} f : S^{n+k} \to Th(\gamma^k_s) \hookrightarrow Th(\gamma^k) \,. \end{displaymath} By [[Thom's transversality theorem]] we may find an embedding $j : Gr_k(\mathbb{R}^s) \to Th(\gamma^k_s)$ by a [[transverse map]] to $f$. Define then $X$ to be the [[pullback]] \begin{displaymath} \itexarray{ X &\to& Gr_k(\mathbb{R}^s) \\ \downarrow && \downarrow^{\mathrlap{j}} \\ S^{n+k} &\stackrel{f}{\to}& Th(\gamma^k_s) } \,. \end{displaymath} We check that this construction provides an inverse to $\Theta$. (\ldots{}) \end{proof} \begin{remark} \label{}\hypertarget{}{} The [[homotopy equivalence]] $\Omega^\infty M O \simeq \vert Cob_\infty \vert$ is the content of the [[Galatius-Madsen-Tillmann-Weiss theorem]], and is now seen as a part of the [[cobordism hypothesis]] theorem. \end{remark} \hypertarget{AsDualObject}{}\subsubsection*{{As a dual in the stable homotopy category}}\label{AsDualObject} Write [[Spec]] for the category of [[spectra]] and $Ho(Spec)$ for its standard [[homotopy category]]: the [[stable homotopy category]]. By the [[symmetric monoidal smash product of spectra]] this becomes a [[monoidal category]]. For $X$ any [[topological space]], we may regard it as an object in $Ho(Spec)$ by forming its [[suspension spectrum]] $\Sigma^\infty_+ X$. We may ask under which conditions on $X$ this is a [[dualizable object]] with respect to the smash-product monoidal structure. It turns out that a sufficient condition is that $X$ a closed [[smooth manifold]] or more generally a [[compact topological space|compact]] Euclidean [[neighbourhood retract]]. In that case $Th(N X)$ -- the Thom spectrum of its [[normal bundle|stable normal bundle]] is the corresponding [[dual object]]. (\hyperlink{Atiyah61}{Atiyah 61}, \hyperlink{DoldPuppe78}{Dold-Puppe 78}). This is called the [[Spanier-Whitehead dual]] of $\Sigma^\infty_+ X$. Using this one shows that the [[trace]] of the identity on $\Sigma^\infty_+ X$ in $Ho(Spec)$ -- the categorical [[dimension]] of $\Sigma^\infty_+ X$ -- is the [[Euler characteristic]] of $X$. For a brief exposition see (\hyperlink{PontoShulman}{PontoShulman, example 3.7}). For more see at \emph{[[Spanier-Whitehead duality]]}. \hypertarget{AsTheUniversalSphericalFibration}{}\subsubsection*{{As the universal spherical fibration, from the $J$-homomorphism}}\label{AsTheUniversalSphericalFibration} The [[J-homomorphism]] is a canonical map $B O \to B gl_1(\mathbb{S})$ from the [[classifying space]] of the [[stable orthogonal group]] to the [[delooping]] of the [[infinity-group of units]] of the [[sphere spectrum]]. This classifies an ``[[(∞,1)-vector bundle]]'' of [[sphere spectrum]]-[[module spectrum|modules]] over $B O$ and this is the Thom spectrum. So in terms of the [[(∞,1)-colimit]] description \hyperlink{ForInfinityModuleBundles}{above} we have \begin{displaymath} M O \simeq \underset{\longrightarrow}{\lim}(B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \to \mathbb{S}Mod = Spectra) \,. \end{displaymath} See at \emph{[[orientation in generalized cohomology]]} for more on this. \hypertarget{AsTheInfiniteCobordismCategory}{}\subsubsection*{{As the infinite cobordism category}}\label{AsTheInfiniteCobordismCategory} The [[geometric realization]] for the [[(infinity,n)-category of cobordisms]] for $n \to \infty$ is the Thom spectrum \begin{displaymath} \vert Bord_\infty \vert \simeq \Omega^\infty MO \,. \end{displaymath} This is implied by the [[Galatius-Madsen-Tillmann-Weiss theorem]] and by [[Jacob Lurie]]`s proof of the [[cobordism hypothesis]]. See also (\href{Francis3}{Francis-Gwilliam, remark 0.9}). \hypertarget{cohomology}{}\subsection*{{Cohomology}}\label{cohomology} Under the [[Brown representability theorem]] the Thom spectrum represents the [[generalized (Eilenberg-Steenrod) cohomology]] theory called [[complex cobordism cohomology theory|cobordism cohomology theory]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cobordism theory]] \item [[Thom space]], [[Thom isomorphism]], [[Pontryagin-Thom collapse map]] \item [[cobordism ring]] \end{itemize} [[!include generalized fiber integration synonyms - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The relation between the homotopy groups of the Thom spectrum and the cobordism ring is due to \begin{itemize}% \item [[René Thom]], \emph{Quelques propri\'e{}t\'e{}s globales des vari\'e{}t\'e{}s diff\'e{}rentiables} Comment. Math. Helv. 28, (1954). 17-86 \end{itemize} Further original articles include \begin{itemize}% \item [[Michael Atiyah]], \emph{Thom complexes}, Proc. London Math. Soc. (3), 11:291--310, 1961. 10 (\href{http://www.maths.ed.ac.uk/~aar/papers/atiyahthom.pdf}{pdf}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Frank Adams]], part III, section 2 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochman]], section 1.5 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Lecture notes include \begin{itemize}% \item [[John Francis]], \emph{Topology of manifolds} course notes (2010) (\href{http://math.northwestern.edu/~jnkf/classes/mflds/}{web}) Lecture 3 \emph{Thom's theorem} (notes by A. Smith) (\href{http://math.northwestern.edu/~jnkf/classes/mflds/3thom.pdf}{pdf}) A remark of the relation of the Thom spectrum to [[(∞,n)-category of cobordisms]] for $n = \infty$ is in: Lecture 2 \emph{Cobordisms} (notes by [[Owen Gwilliam]]) (\href{http://math.northwestern.edu/~jnkf/classes/mflds/2cobordism.pdf}{pdf}) \item [[Johannes Ebert]], \emph{A lecture course on Cobordism Theory}, 2012 (\href{http://wwwmath.uni-muenster.de/u/jeber_02/skripten/bordism-skript.pdf}{pdf}) \item [[Dan Freed]], lecture 10 of \emph{Bordism: old and new}, 2013 (\href{http://www.ma.utexas.edu/users/dafr/bordism.pdf}{pdf}) \end{itemize} As [[symmetric spectra]]: \begin{itemize}% \item [[Mark Hovey]], [[Brooke Shipley]], [[Jeff Smith]], example 6.2.3 of \emph{Symmetric spectra}, J. Amer. Math. Soc. 13 (2000), 149-208 (\href{http://arxiv.org/abs/math/9801077}{arXiv:math/9801077}) \item [[Christian Schlichtkrull]], \emph{Thom Spectra that Are Symmetric Spectra}, Documenta Mathematica 14 (2009) 699-748 (\href{http://arxiv.org/abs/0811.0592}{arXiv:0811.0592}) \item [[Stefan Schwede]], Example I.2.6 in \emph{Symmetric spectra}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec.pdf}{pdf}) \end{itemize} As [[orthogonal spectra]] and as [[equivariant spectra]] \begin{itemize}% \item [[Stefan Schwede]], chapter V.4 of \emph{[[Global homotopy theory]]}, 2015 \end{itemize} Textbook discussion with an eye towards the [[generalized (Eilenberg-Steenrod) cohomology]] of [[topological K-theory]] and [[cobordism cohomology theory]] is in \begin{itemize}% \item [[Yuli Rudyak]], \emph{On Thom spectra, orientability and cobordism}, Springer Monographs in Mathematics, 1998 (\href{http://www.maths.ed.ac.uk/~aar/papers/rudyakthom.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Frank Quinn]], \emph{Assembly maps in bordism-type theories} (\href{http://www.maths.ed.ac.uk/~aar/papers/quinnass.pdf}{pdf}) \end{itemize} A generalized notion of Thom spectra in terms of [[(∞,1)-module bundles]] is discussed in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Units of ring spectra and Thom spectra} (\href{http://arxiv.org/abs/0810.4535}{arXiv:0810.4535}) \end{itemize} a streamlined update of which is \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{An $\infty$-categorical approach to $R$-line bundles, $R$-module Thom spectra, and twisted $R$-homology} (\href{http://arxiv.org/abs/1403.4325}{arXiv:1403.4325}) \end{itemize} Discussion of Thom spectra from the point of view of [[(∞,1)-module bundles]] is in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Twists of K-theory and TMF}, in Robert S. Doran, Greg Friedman, [[Jonathan Rosenberg]], \emph{Superstrings, Geometry, Topology, and $C^*$-algebras}, Proceedings of Symposia in Pure Mathematics \href{http://www.ams.org/bookstore-getitem/item=PSPUM-81}{vol 81}, American Mathematical Society (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \end{itemize} which is reviewed in \begin{itemize}% \item [[Dylan Wilson]], \emph{Thom spectra from the $\infty$ point of view}, 2013 (\href{http://www.math.northwestern.edu/~bwill/thom/DWthom4.pdf}{pdf}) \end{itemize} and in the context of [[motivic quantization]] via [[fiber integration in generalized cohomology|pushforward]] in [[twisted cohomology|twisted]] [[generalized cohomology]] in section 3.1 of \begin{itemize}% \item [[Joost Nuiten]], \emph{[[schreiber:master thesis Nuiten|Cohomological quantization of local prequantum boundary field theory]]}, master thesis 2013 \end{itemize} \hypertarget{as_dual_objects_in_the_stable_homotopy_category}{}\subsubsection*{{As dual objects in the stable homotopy category}}\label{as_dual_objects_in_the_stable_homotopy_category} The relation of Thom spectra to [[dualizable objects]] in the [[stable homotopy category]] is originally due to (\hyperlink{Atiyah61}{Atiyah 61}) and \begin{itemize}% \item [[Albrecht Dold]], [[Dieter Puppe]], \emph{Duality, trace, and transfer}. In Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), pages 81--102, Warsaw, 1980. PWN. \item [[L. Gaunce Lewis, Jr.]], [[Peter May]], M. Steinberger, and J. E. McClure, \emph{Equivariant stable homotopy theory}, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. \end{itemize} A brief exposition appears as example 3.7 in \begin{itemize}% \item [[Kate Ponto]] and [[Mike Shulman]], \emph{Traces in symmetric monoidal categories} (\href{http://arxiv.org/abs/1107.6032}{arXiv:1107.6032}, \href{http://www.sandiego.edu/~shulman/papers/ccrtraces.pdf}{slides}). \end{itemize} [[!redirects Thom spectra]] [[!redirects generalized Thom spectrum]] [[!redirects generalized Thom spectra]] \end{document}