\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Tietze extension theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{summary}{Summary}\dotfill \pageref*{summary} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{ForContinuousFunctions}{For continuous functions}\dotfill \pageref*{ForContinuousFunctions} \linebreak \noindent\hyperlink{Manifolds}{For smooth functions}\dotfill \pageref*{Manifolds} \linebreak \noindent\hyperlink{for_smooth_loci}{For smooth loci}\dotfill \pageref*{for_smooth_loci} \linebreak \noindent\hyperlink{related_theorems}{Related theorems}\dotfill \pageref*{related_theorems} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{summary}{}\subsection*{{Summary}}\label{summary} The \emph{Tietze extension theorem} says that [[continuous functions]] [[extension|extend]] from [[closed subsets]] of a [[normal topological space]] $X$ to the whole space $X$. This is a close cousin of [[Urysohn's lemma]] with many applications. One implication is that [[topological vector bundles]] over a topological space $X$ that trivialize over a [[closed subspace]] $A$ are equivalent to vector bundles on the [[quotient space]] $X/A$ (see \href{topological+vector+bundle#OverClosedSubspaces}{there}). This in turn is what implies the [[long exact sequence in cohomology]] for [[topological K-theory]] (see \href{topological+K-theory#ExactSequences}{there}). \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{ForContinuousFunctions}{}\subsubsection*{{For continuous functions}}\label{ForContinuousFunctions} \begin{theorem} \label{}\hypertarget{}{} For $X$ a [[normal topological space]] and $A \subset X$ a [[closed subspace]], there is for every [[continuous function]] $f \colon A \to \mathbb{R}$ to the [[real line]] (with its [[Euclidean space|Euclidean]] [[metric topology]]) a continuous function $\hat f \colon X \to \mathbb{R}$ [[extension|extending]] it, i.e. such that $\hat f|_A = f$: \begin{displaymath} \itexarray{ A &\hookrightarrow & X \\ {}^{\mathllap{f}}\downarrow & \swarrow_{\mathrlap{\exists \hat f} } \\ \mathbb{R} } \end{displaymath} Therefore one also says that \emph{$\mathbb{R}$ is an [[absolute extensor]]} in [[topology]]. \end{theorem} \begin{proof} We produce a [[sequence]] of approximations to the desired extension by [[induction]]. Then we will observe that the sequence is a [[Cauchy sequence]] and conclude by observing that this implies that it [[limit of a sequence|limit]] is an extension of $f$ as desired. For the induction step, let \begin{displaymath} \hat f_n \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} be a [[continuous function]] on $X$ such that the difference of its restriction to $A$ with $f$ is a [[bounded function]], for a bound $c_n \in (0,\infty) \subset \mathbb{R}$: \begin{displaymath} \underset{a \in A}{\forall} \left( { \left\Vert f(a) - \hat f_n (a) \right\Vert } \leq c_n \right) \,. \end{displaymath} Consider then the [[pre-image]] subsets \begin{displaymath} S_- \coloneqq \left( f - \hat f_n\vert_A \right)^{-1}\big( [-c_n, -c_n/3] \big) \phantom{AAAA} S_+ \coloneqq \left( f - \hat f_n\vert_A \right)^{-1}\big( [c_n/3, c_n] \big) \,. \end{displaymath} Since the [[closed intervals]] $[-c_n,-c_n/3], [c_n/3, c_n] \subset \mathbb{R}$ are [[closed subsets]], and since $f - \hat f_n\vert_A$ is a [[continuous function]], these are [[closed subsets]] of $A$. Moreover, since [[subsets are closed in a closed subspace precisely if they are closed in the ambient space]], these are also closed subsets of $X$. Therefore, since $X$ is [[normal topological space|normal]] by assumption, it follows with [[Urysohn's lemma]] that there is a continuous function \begin{displaymath} \phi \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} with \begin{displaymath} \underset{x \in X}{\forall} \left( 0 \leq \phi(x) \leq 1 \right) \end{displaymath} and \begin{displaymath} \phi\vert_{S_+} = 1 \phantom{AAAA} \phi\vert_{S_-} = 0 \,. \end{displaymath} Consider then the continuous function \begin{displaymath} g_{n+1} \;\coloneqq\; \tfrac{2 c_n}{3} \phi - \tfrac{c_n}{3} \end{displaymath} This now satisfies \begin{displaymath} g_{n+1}\vert_{S_+} = \frac{c_n}{3} \phantom{AAAA} g_{n+1}\vert_{S_-} = -\frac{c_n}{3} \,. \end{displaymath} with \begin{displaymath} \underset{x \in X}{\forall} \left( \left \Vert g_{n+1} (x) \right\Vert \leq \tfrac{c_n}{3} \right) \,. \end{displaymath} Moreover, observe that this function satisfies \begin{displaymath} \underset{a \in A}{\forall} \left( \left\Vert f - \hat f_n(a) - g_{n+1}(a) \right\Vert \leq \tfrac{2 c_n}{3} \right) \,. \end{displaymath} To wit, this is because \begin{enumerate}% \item for $a \in S_+$ we have $g_{n+1}(a) = \tfrac{c_n}{3}$ and $f(a) - \hat f_{n}(a) \in [c_n/3,c_n]$; \item for $a \in S_-$ we have $g_{n+1}(a) = -\tfrac{c_n}{3}$ and $f(a) - \hat f_{n}(a) \in [-c_n/3,-c_n]$; \item for $a \in Y \setminus \{S_+ \cup S_-\}$ we have $g(a) \in [-c_n/3,c_n/3]$ as well as $f(a) - \hat f_{n}(a) \in [-c_n/3, c_n/3]$. \end{enumerate} It follows that if we set \begin{displaymath} \hat f_{n+1} \coloneqq \hat f_n + g_{n+1} \end{displaymath} then \begin{displaymath} \underset{a \in A}{\forall} \left( { \left\Vert f(a) - \hat f_{n+1}(a) \right\Vert } \leq \tfrac{2 c_n}{3} \right) \,. \end{displaymath} This gives the induction step. To start the induction, first assume that $f$ is bounded by a constant $c_0$. Then we may set \begin{displaymath} \hat f_0 \coloneqq const_0 \,. \end{displaymath} Hence [[induction]] now gives a [[sequence]] of continuous functions \begin{displaymath} (\hat f_n)_{n \in \mathbb{N}} \end{displaymath} with the property that \begin{displaymath} \underset{a \in A}{\forall} \left( \left\Vert f(a) -\hat f_n(a) \right\Vert \leq \left( \tfrac{2}{3}\right)^n c_0 \right) \,. \end{displaymath} Moreover, for $n_1, n_2 \in \mathbb{N}$ with $n_2 \geq n_1$ and $x \in X$ we have \begin{displaymath} \begin{aligned} {\Vert \hat f_{n_2}(x) - \hat f_{n_1}(x) \Vert} & = {\Vert g_{n_1 + 1}(x) + g_{n_1 + 2}(c) + \cdots + g_{n_2}(x) \Vert} \\ & \leq \underoverset{k = n_1+1}{n_2}{\sum} \tfrac{1}{3^{k}} c_0 \\ & \leq \underoverset{k = n_1+1}{\infty}{\sum} \tfrac{1}{3^{k}} c_0 \end{aligned} \end{displaymath} That the [[geometric series]] $\sum_{k = 0}^\infty 1/3^k$ [[convergence of a sequence|converges]] \begin{displaymath} \underoverset{n}{k = 0}{\sum} 1/3 k \overset{n \to \infty}{\longrightarrow} \frac{1}{1 - 1/3} = 3/2 \end{displaymath} this becomes arbitrarily small for large $n_1$. This means that the sequence $(\hat f_{n+1})_{n\in \mathbb{N}}$ is a [[Cauchy sequence]] in the [[supremum norm]] for real-valued functions. Since uniform Cauchy sequences of continuous functions with values in a [[complete space|complete]] [[metric space]] [[uniform convergence|converge uniformly]] to a [[continuous function]] (\href{uniform+convergence#FunctionsUniformCauchySequence}{this prop.}) this implies that the sequence [[uniform convergence|converges uniformly]] to a [[continuous function]]. By construction, this is an extension as required. Finally consider the case that $f$ is not a [[bounded function]]. In this case consider any [[homeomorphism]] $\phi \colon \mathbb{R}^1 \overset{\simeq}{\to} (-c_0,c_0) \subset \mathbb{R}^1$ between the [[real line]] and an [[open interval]] Then $\phi \circ f$ is a continous function bounded by $c_0$ and hence the above argument gives an extension $\widehat {\phi \circ f}$. Then $\phi^{-1} \circ \widehat{ \phi \circ f }$ is an extension of $f$. \end{proof} \hypertarget{Manifolds}{}\subsubsection*{{For smooth functions}}\label{Manifolds} See \emph{[[Whitney extension theorem]]}, also \emph{[[Steenrod-Wockel approximation theorem]]}. \hypertarget{for_smooth_loci}{}\subsubsection*{{For smooth loci}}\label{for_smooth_loci} Let $\mathbb{L} = (C^\infty Ring^{fin})^{op}$ be the category of [[smooth loci]], the [[opposite category]] of finitely generated [[generalized smooth algebra]]s. By the theorem discussed there, there is a [[full and faithful functor]] [[Diff]] $\hookrightarrow \mathbb{L}$. \begin{defn} \label{}\hypertarget{}{} For $A = C^\infty(\mathbb{R}^n)/J$ and $B = C^\infty(\mathbb{R}^n)/I$ with $I \subset J$ and $B \to A$ the projection of [[generalized smooth algebra]]s the corresponding [[monomorphism]] $\ell A \to \ell B$ in $\mathbb{L}$ exhibits $\ell A$ as a \textbf{closed smooth sublocus} of $\ell B$. \end{defn} \begin{lemma} \label{}\hypertarget{}{} Let $X$ be a [[smooth manifold]] and let $\{g_i \in C^\infty(X)\}_{i = 1}^n$ be [[smooth function]]s that are independent in the sense that at each common zero point $x\in X$, $\forall i : g_i(x)= 0$ we have the [[derivative]] $(d g_i) : T_x X \to \mathbb{R}^n$ is a surjection, then the ideal $(g_1, \cdots, g_n)$ coincides with the ideal of functions that vanish on the zero-set of the $g_i$. \end{lemma} This is lemma 2.1 in Chapter I of (\hyperlink{MoerdijkReyes}{MoerdijkReyes}). \begin{prop} \label{}\hypertarget{}{} If $\ell A \hookrightarrow \ell B$ is a closed sublocus of $\ell B$ then every morphism $\ell A \to R$ extends to a morphism $\ell B \to R$ \end{prop} This is prop. 1.6 in Chapter II of (\hyperlink{MoerdijkReyes}{MoerdijkReyes}). \begin{proof} Since we have $R = \ell C^\infty(\mathbb{R})$ and $C^\infty(\mathbb{R})$ is the free [[generalized smooth algebra]] on a single generator, a morphism $\ell A \to R$ is precisely an element of $C^\infty(\mathbb{R}^n)/J$. This is represented by an element in $C^\infty(\mathbb{R}^n)$ which in particular defines an element in $C^\infty(\mathbb{R}^n)/I$. \end{proof} \hypertarget{related_theorems}{}\subsection*{{Related theorems}}\label{related_theorems} [[!include extension theorems -- table]] \begin{itemize}% \item [[Urysohn's lemma]] \item [[Hadamard lemma]] \item [[Borel's theorem]] \item [[Steenrod-Wockel approximation theorem]] \item [[Whitney extension theorem]] \item [[Taimanov theorem]] \item [[embedding of smooth manifolds into formal duals of R-algebras]] \item [[smooth Serre-Swan theorem]] \item [[derivations of smooth functions are vector fields]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Leture notes include \begin{itemize}% \item Adam Boocher, \emph{A proof of the Tietze Extension Theorem Using Urysohn's Lemma}, 2005 (\href{http://www.maths.ed.ac.uk/~aboocher/math/tietze.pdf}{pdf}) \end{itemize} Discussion of the smooth version includes \begin{itemize}% \item [[Ieke Moerdijk]], [[Gonzalo Reyes]], chapters I and II of \emph{[[Models for Smooth Infinitesimal Analysis]]} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Tietze_extension_theorem}{Tietze extension theorem}} \item [[Planet Math]], \emph{\href{http://planetmath.org/proofoftietzeextensiontheorem}{Proof of the Tietze extension theorem}} \end{itemize} \end{document}