\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Toda bracket} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-topos theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[abelian categories]] one talks of [[chain complexes]]; and in that context a composable pair $A \to B \to C$ is null iff $B \to C$ factors through the [[cokernel]] $B/(A)$: \begin{displaymath} \begin{array}{ccccc} A & \to & B \\ \downarrow & & \downarrow & \searrow \\ 0 & \to & B/(A) & \to & C \end{array} \end{displaymath} and so forth. In a strict context, the factorization is unique. In a pointed [[(∞,1)-category]] with [[(∞,1)-colimits]] of small [[1-truncated]] [[diagrams]], one may still consider factorizations through [[cofibers]]: $A \to B \to C \sim * : A \to C$ but now there is a choice to make, roughly parametrized by an [[action]] of $Map_* (\Sigma A, C)$. This leads to interesting structure, describing (with upper bounds!) how trivially a particular sequence of arrows may compose. To begin, consider a sequence of maps $A_0 \to A_1 \to A_2 \to A_3$. If the composites $A_0 \to A_2$ and $A_1\to A_3$ are nulhomotopic, then one has a diagram \begin{displaymath} \begin{array}{ccccc} A_0 & \to & A_1 & \to & * \\ \downarrow & & \downarrow & & \downarrow \\ * & \to & A_2 & \to & A_3 \end{array} \end{displaymath} any choice of homotopies in the two squares gives a map $\Sigma A_0 \to A_3$. \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} Define $C$ and $D$ to be the cofibers of $A_0 \to A_1$ and $A_1\to A_2$, respectively. A choice of homotopy $A_0 \to A_2 \sim 0$ corresponds to a choice of factorization $A_1 \to C \to A_2$, which gives a diagram of pushout squares \begin{displaymath} \begin{array}{ccccccc} A_0 & \to & A_1 & \to & * \\ \downarrow & & \downarrow & & \downarrow \\ * & \to & C &\to & \Sigma A_0 & \to & *\\ & & \downarrow & & \downarrow & & \downarrow \\ & & A_2 & \to & D & \to & C' \end{array} \end{displaymath} It is to be noted that the map $\Sigma A_0 \to D$ and possibly the object $C'$ depend on the choice of factor $C \to A_2$, but that $A_2 \to D$ does not, in any meaningful sense, so depend: this is just the structure map of the cofiber of $A_1\to A_2$. Note that the cofiber $C'$ of $C\to A_2$ is thus equivalent to that of $\Sigma A_0 \to D$; but again the role of choices must be studied. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A sequence of maps $A_0 \to A_1 \to \cdots \to A_n$ will be called \emph{a bracket sequence} (a novel phrase for the purposes of this entry) in either of two cases: \begin{itemize}% \item $n = 3$ and the composites $A_0 \to A_2$ and $A_1 \to A_3$ are nulhomotopic; OR \item $n \gt 3$, and (using the preceding notations), there are choices of factor $C\to A_2$ and $D \to A_3$ such that the induced sequence $\Sigma A_0 \to D \to A_3 \to \cdots \to A_n$ is a bracket sequence. \end{itemize} In all cases, a bracket sequence leads to a three-map sequence \begin{displaymath} \Sigma^m A_0 \to D_m \to A_{m+2} \to A_{m+3} \end{displaymath} in which consecutive maps compose trivially, and so there are induced choices of maps \begin{displaymath} \Sigma^{m+1} A_0 \to A_{m+3} . \end{displaymath} The collection of all such maps, taking all compatible variations, is the \textbf{Toda Bracket} of the bracket sequence. Among the bracket sequences, a particular family arises which here will be called \emph{null-bracket} (again, a novel phrase). A sequence will be called null-bracket if \begin{itemize}% \item $n=2$ and $A_0 \to A_2$ is trivial, OR \item $n \gt 2$, and there is a choice of factorization $A_1 \to C \to A_2$ such that the sequence $C \to A_2 \to \cdots \to A_n$ is null-bracket. \end{itemize} If the Toda bracket for a bracket sequence includes the trivial map $\Sigma^{m+1} A_0 \to A_{m+3}$ then the sequence is null-bracket. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} By definition, if a sequence is a bracket sequence AND NOT a null-bracket sequence, it follows that all the relevant maps $\Sigma^{k} A_0 \to A_n$ are nontrivial. Things like these Toda brackets have been studied by many \emph{(FIXME: referrences later)} and especially the length-three brackets used by H. Toda to describe most of $\pi_k \mathbb{S}^n$ for $k \lt 31$ or so. In (\hyperlink{Cohen}{Cohen, 1968}) is given a criterion for stable maps of spheres to inhabit non-null Toda brackets; this turns out to be most of $\pi_* \mathbb{S}$, and furthermore the maps in the bracket sequences can be chosen from a very small set (\_FIXME\_: be more precise! degree maps $n \iota$, [[Hopf map]]s $\eta, \theta,\sigma$, and $\alpha_p$\ldots{} ) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Massey product]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Joel Cohen, \emph{The decomposition of stable homotopy}, Annals of Mathematics (2) 87 (2): 305--320 (1968) \end{itemize} \begin{itemize}% \item [[Stanley Kochmann]], section 5.7 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Hans-Joachim Baues]], \emph{On the cohomology of categories, universal Toda brackets and homotopy pairs}, K-Theory \textbf{11}:3, April 1997, pp. 259-285 (27) \href{http://link.springer.com/article/10.1023/A%3A1007796409912}{springer} \item Boryana Dimitrova, \emph{Universal Toda brackets of commutative ring spectra}, poster, Bonn 2010, \href{http://www.math.uni-bonn.de/people/grk1150/YWT2010/YWT_Dimitrova.pdf}{pdf} \item C. Roitzheim, [[S. Whitehouse]], \emph{Uniqueness of $A_\infty$-structures and Hochschild cohomology}, \href{http://arxiv.org/abs/0909.3222}{arxiv/0909.3222} \item [[Steffen Sagave]], \emph{Universal Toda brackets of ring spectra}, Trans. Amer. Math. Soc., 360(5):2767-2808, 2008, \href{http://arxiv.org/abs/math/0611808}{math.KT/0611808} \end{itemize} [[!redirects Toda Brackets]] [[!redirects Toda brackets]] \end{document}