\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Top} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{UniversalConstructions}{Universal constructions}\dotfill \pageref*{UniversalConstructions} \linebreak \noindent\hyperlink{relation_with_}{Relation with $Set$}\dotfill \pageref*{relation_with_} \linebreak \noindent\hyperlink{MonoEpiMorphisms}{Mono-/Epimorphisms}\dotfill \pageref*{MonoEpiMorphisms} \linebreak \noindent\hyperlink{intersections_and_quotients}{Intersections and quotients}\dotfill \pageref*{intersections_and_quotients} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \textbf{Top} denotes the [[category]] whose [[objects]] are [[topological spaces]] and whose [[morphisms]] are [[continuous functions]] between them. Its [[isomorphisms]] are the [[homeomorphisms]]. For exposition see \emph{[[Introduction to Topology -- 1|Introduction to point-set topology]]}. Often one considers (sometimes by default) [[subcategories]] of [[nice topological spaces]] such as [[compactly generated topological spaces]], notably because these are [[cartesian closed category|cartesian closed]]. There other other [[convenient categories of topological spaces]]. With any one such choice understood, it is often useful to regard it as ``the'' category of topological spaces. The [[homotopy category]] of $Top$ given by its [[localization]] at the [[weak homotopy equivalences]] is the [[classical homotopy category]] [[Ho(Top)]]. This is the central object of study in [[homotopy theory]], see also at \emph{[[classical model structure on topological spaces]]}. The [[simplicial localization]] of [[Top]] at the [[weak homotopy equivalences]] is the archetypical [[(∞,1)-category]], [[equivalence of (infinity,1)-categories|equivalent]] to [[∞Grpd]] (see at \emph{[[homotopy hypothesis]]}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{UniversalConstructions}{}\subsubsection*{{Universal constructions}}\label{UniversalConstructions} We discuss [[universal constructions]] in [[Top]], such as [[limits]]/[[colimits]], etc. The following definition suggests that universal constructions be seen in the context of $Top$ as a [[topological concrete category]] (see Proposition \ref{topcat} below). $\,$ [[!include universal constructions of topological spaces -- table]] $\,$ \begin{defn} \label{InitialAndFinalTopologies}\hypertarget{InitialAndFinalTopologies}{} Let $\{X_i = (S_i,\tau_i) \in Top\}_{i \in I}$ be a [[class]] of [[topological spaces]], and let $S \in Set$ be a bare [[set]]. Then \begin{itemize}% \item For $\{S \stackrel{f_i}{\to} S_i \}_{i \in I}$ a set of [[functions]] out of $S$, the \emph{[[initial topology]]} $\tau_{initial}(\{f_i\}_{i \in I})$ is the topology on $S$ with the [[minimum]] collection of [[open subsets]] such that all $f_i \colon (S,\tau_{initial}(\{f_i\}_{i \in I}))\to X_i$ are [[continuous function|continuous]]. \item For $\{S_i \stackrel{f_i}{\to} S\}_{i \in I}$ a set of [[functions]] into $S$, the \emph{[[final topology]]} $\tau_{final}(\{f_i\}_{i \in I})$ is the topology on $S$ with the [[maximum]] collection of [[open subsets]] such that all $f_i \colon X_i \to (S,\tau_{final}(\{f_i\}_{i \in I}))$ are [[continuous function|continuous]]. \end{itemize} \end{defn} \begin{example} \label{TopologicalSubspace}\hypertarget{TopologicalSubspace}{} For $X$ a single topological space, and $\iota_S \colon S \hookrightarrow U(X)$ a subset of its underlying set, then the initial topology $\tau_{intial}(\iota_S)$, def. \ref{InitialAndFinalTopologies}, is the [[subspace topology]], making \begin{displaymath} \iota_S \;\colon\; (S, \tau_{initial}(\iota_S)) \hookrightarrow X \end{displaymath} a [[topological subspace]] inclusion. \end{example} \begin{example} \label{QuotientTopology}\hypertarget{QuotientTopology}{} Conversely, for $p_S \colon U(X) \longrightarrow S$ an [[epimorphism]], then the final topology $\tau_{final}(p_S)$ on $S$ is the \emph{[[quotient topology]]}. \end{example} \begin{prop} \label{DescriptionOfLimitsAndColimitsInTop}\hypertarget{DescriptionOfLimitsAndColimitsInTop}{} Let $I$ be a [[small category]] and let $X_\bullet \colon I \longrightarrow Top$ be an $I$-[[diagram]] in [[Top]] (a [[functor]] from $I$ to $Top$), with components denoted $X_i = (S_i, \tau_i)$, where $S_i \in Set$ and $\tau_i$ a topology on $S_i$. Then: \begin{enumerate}% \item The [[limit]] of $X_\bullet$ exists and is given by [[generalized the|the]] topological space whose underlying set is [[generalized the|the]] limit in [[Set]] of the underlying sets in the diagram, and whose topology is the [[initial topology]], def. \ref{InitialAndFinalTopologies}, for the functions $p_i$ which are the limiting [[cone]] components: \begin{displaymath} \itexarray{ && \underset{\longleftarrow}{\lim}_{i \in I} S_i \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p_j}} \\ S_i && \underset{}{\longrightarrow} && S_j } \,. \end{displaymath} Hence \begin{displaymath} \underset{\longleftarrow}{\lim}_{i \in I} X_i \simeq \left(\underset{\longleftarrow}{\lim}_{i \in I} S_i,\; \tau_{initial}(\{p_i\}_{i \in I})\right) \end{displaymath} \item The [[colimit]] of $X_\bullet$ exists and is the topological space whose underlying set is the colimit in [[Set]] of the underlying diagram of sets, and whose topology is the [[final topology]], def. \ref{InitialAndFinalTopologies} for the component maps $\iota_i$ of the colimiting [[cocone]] \begin{displaymath} \itexarray{ S_i && \longrightarrow && S_j \\ & {}_{\mathllap{\iota_i}}\searrow && \swarrow_{\mathrlap{\iota_j}} \\ && \underset{\longrightarrow}{\lim}_{i \in I} S_i } \,. \end{displaymath} Hence \begin{displaymath} \underset{\longrightarrow}{\lim}_{i \in I} X_i \simeq \left(\underset{\longrightarrow}{\lim}_{i \in I} S_i,\; \tau_{final}(\{\iota_i\}_{i \in I})\right) \end{displaymath} \end{enumerate} \end{prop} (e.g. \hyperlink{Bourbaki71}{Bourbaki 71, section I.4}) \begin{proof} The required [[universal property]] of $\left(\underset{\longleftarrow}{\lim}_{i \in I} S_i,\; \tau_{initial}(\{p_i\}_{i \in I})\right)$ is immediate: for \begin{displaymath} \itexarray{ && (S,\tau) \\ & {}^{\mathllap{f_i}}\swarrow && \searrow^{\mathrlap{f_j}} \\ X_i && \underset{}{\longrightarrow} && X_j } \end{displaymath} any [[cone]] over the diagram, then by construction there is a unique function of underlying sets $S \longrightarrow \underset{\longleftarrow}{\lim}_{i \in I} S_i$ making the required diagrams commute, and so all that is required is that this unique function is always [[continuous function|continuous]]. But this is precisely what the initial topology ensures. The case of the colimit is [[formal dual|formally dual]]. \end{proof} \begin{example} \label{PointTopologicalSpaceAsEmptyLimit}\hypertarget{PointTopologicalSpaceAsEmptyLimit}{} The limit over the empty diagram in $Top$ is the [[point]] $\ast$ with its unique topology. \end{example} \begin{example} \label{DisjointUnionOfTopologicalSpacesIsCoproduct}\hypertarget{DisjointUnionOfTopologicalSpacesIsCoproduct}{} For $\{X_i\}_{i \in I}$ a set of topological spaces, their [[coproduct]] $\underset{i \in I}{\sqcup} X_i \in Top$ is their \emph{[[disjoint union]]}. \end{example} In particular: \begin{example} \label{DiscreteTopologicalSpaceAsCoproduct}\hypertarget{DiscreteTopologicalSpaceAsCoproduct}{} For $S \in Set$, the $S$-indexed [[coproduct]] of the point, $\underset{s \in S}{\coprod}\ast$, is the set $S$ itself equipped with the [[final topology]], hence is the [[discrete topological space]] on $S$. \end{example} \begin{example} \label{ProductTopologicalSpace}\hypertarget{ProductTopologicalSpace}{} For $\{X_i\}_{i \in I}$ a set of topological spaces, their [[product]] $\underset{i \in I}{\prod} X_i \in Top$ is the [[Cartesian product]] of the underlying sets equipped with the \emph{[[product topology]]}, also called the \emph{[[Tychonoff product]]}. In the case that $S$ is a [[finite set]], such as for binary product spaces $X \times Y$, then a [[basis for a topology|sub-basis]] for the product topology is given by the [[Cartesian products]] of the open subsets of (a basis for) each factor space. \end{example} \begin{example} \label{EqualizerInTop}\hypertarget{EqualizerInTop}{} The [[equalizer]] of two [[continuous functions]] $f, g \colon X \stackrel{\longrightarrow}{\longrightarrow} Y$ in $Top$ is the equalizer of the underlying functions of sets \begin{displaymath} eq(f,g) \hookrightarrow S_X \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} S_Y \end{displaymath} (hence the largets subset of $S_X$ on which both functions coincide) and equipped with the [[subspace topology]], example \ref{TopologicalSubspace}. \end{example} \begin{example} \label{CoequalizerInTop}\hypertarget{CoequalizerInTop}{} The [[coequalizer]] of two [[continuous functions]] $f, g \colon X \stackrel{\longrightarrow}{\longrightarrow} Y$ in $Top$ is the coequalizer of the underlying functions of sets \begin{displaymath} S_X \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} S_Y \longrightarrow coeq(f,g) \end{displaymath} (hence the [[quotient set]] by the [[equivalence relation]] generated by $f(x) \sim g(x)$ for all $x \in X$) and equipped with the [[quotient topology]], example \ref{QuotientTopology}. \end{example} \begin{example} \label{PushoutInTop}\hypertarget{PushoutInTop}{} For \begin{displaymath} \itexarray{ A &\overset{g}{\longrightarrow}& Y \\ {}^{\mathllap{f}}\downarrow \\ X } \end{displaymath} two [[continuous functions]] out of the same [[domain]], then the [[colimit]] under this diagram is also called the \emph{[[pushout]]}, denoted \begin{displaymath} \itexarray{ A &\overset{g}{\longrightarrow}& Y \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{g_\ast f}} \\ X &\longrightarrow& X \sqcup_A Y \,. } \,. \end{displaymath} (Here $g_\ast f$ is also called the pushout of $f$, or the \emph{[[base change|cobase change]]} of $f$ along $g$.) If $g$ is an inclusion, one also write $X \cup_f Y$ and calls this the \emph{[[attaching space]]}. By example \ref{CoequalizerInTop} the [[pushout]]/[[attaching space]] is the [[quotient topological space]] \begin{displaymath} X \sqcup_A Y \simeq (X\sqcup Y)/\sim \end{displaymath} of the [[disjoint union]] of $X$ and $Y$ subject to the [[equivalence relation]] which identifies a point in $X$ with a point in $Y$ if they have the same pre-image in $A$. (graphics from \hyperlink{AguilarGitlerPrieto02}{Aguilar-Gitler-Prieto 02}) \end{example} \begin{example} \label{TopologicalnSphereIsPushoutOfBoundaryOfnBallInclusionAlongItself}\hypertarget{TopologicalnSphereIsPushoutOfBoundaryOfnBallInclusionAlongItself}{} As an important special case of example \ref{PushoutInTop}, let \begin{displaymath} i_n \colon S^{n-1}\longrightarrow D^n \end{displaymath} be the canonical inclusion of the standard [[n-sphere|(n-1)-sphere]] as the [[boundary]] of the standard [[n-disk]] (both regarded as [[topological spaces]] with their [[subspace topology]] as subspaces of the [[Cartesian space]] $\mathbb{R}^n$). Then the colimit in [[Top]] under the diagram, i.e. the [[pushout]] of $i_n$ along itself, \begin{displaymath} \left\{ D^n \overset{i_n}{\longleftarrow} S^{n-1} \overset{i_n}{\longrightarrow} D^n \right\} \,, \end{displaymath} is the [[n-sphere]] $S^n$: \begin{displaymath} \itexarray{ S^{n-1} &\overset{i_n}{\longrightarrow}& D^n \\ {}^{\mathllap{i_n}}\downarrow &(po)& \downarrow \\ D^n &\longrightarrow& S^n } \,. \end{displaymath} (graphics from Ueno-Shiga-Morita 95) \end{example} \begin{example} \label{ClosedSubspacesGluing}\hypertarget{ClosedSubspacesGluing}{} \textbf{([[union]] of two [[open subset|open]] or two [[closed subset|closed]] [[subspaces]] is [[pushout]])} Let $X$ be a [[topological space]] and let $A,B \subset X$ be [[subspaces]] such that \begin{enumerate}% \item $A,B \subset X$ are both [[open subsets]] or are both [[closed subsets]]; \item they constitute a [[cover]]: $X = A \cup B$ \end{enumerate} Write $i_A \colon A \to X$ and $i_B \colon B \to X$ for the corresponding inclusion [[continuous functions]]. Then the [[commuting square]] \begin{displaymath} \itexarray{ A \cap B &\longrightarrow& A \\ \downarrow && \downarrow^{\mathrlap{i_A}} \\ B &\underset{i_B}{\longrightarrow}& X } \end{displaymath} is a [[pushout]] square in $Top$ (example \ref{PushoutInTop}). By the [[universal property]] of the [[pushout]] this means in particular that for $Y$ any [[topological space]] then a function of underlying sets \begin{displaymath} f \;\colon\; X \longrightarrow Y \end{displaymath} is a [[continuous function]] as soon as its two restrictions \begin{displaymath} f\vert_A \;\colon\; A \longrightarrow Y \phantom{AAAA} f\vert_A \;\colon\; B \longrightarrow Y \end{displaymath} are continuous. \end{example} \begin{proof} Clearly the underlying diagram of underlying [[sets]] is a pushout in [[Set]]. Therefore by prop. \ref{DescriptionOfLimitsAndColimitsInTop} we need to show that the [[topological space|topology]] on $X$ is the [[final topology]] induced by the set of functions $\{i_A, i_B\}$, hence that a [[subset]] $S \subset X$ is an [[open subset]] precisely if the [[pre-images]] (restrictions) \begin{displaymath} i_A^{-1}(S) = S \cap A \phantom{AAA} \text{and} \phantom{AAA} i_B^{-1}(S) = S \cap B \end{displaymath} are open subsets of $A$ and $B$, respectively. Now by definition of the [[subspace topology]], if $S \subset X$ is open, then the intersections $A \cap S \subset A$ and $B \cap S \subset B$ are open in these subspaces. Conversely, assume that $A \cap S \subset A$ and $B \cap S \subset B$ are open. We need to show that then $S \subset X$ is open. Consider now first the case that $A;B \subset X$ are both open open. Then by the nature of the [[subspace topology]], that $A \cap S$ is open in $A$ means that there is an open subset $S_A \subset X$ such that $A \cap S = A \cap S_A$. Since the intersection of two open subsets is open, this implies that $A \cap S_A$ and hence $A \cap S$ is open. Similarly $B \cap S$. Therefore \begin{displaymath} \begin{aligned} S & = S \cap X \\ & = S \cap (A \cup B) \\ & = (S \cap A) \cup (S \cap B) \end{aligned} \end{displaymath} is the union of two open subsets and therefore open. Now consider the case that $A,B \subset X$ are both closed subsets. Again by the nature of the subspace topology, that $A \cap S \subset A$ and $B \cap S \subset B$ are open means that there exist open subsets $S_A, S_B \subset X$ such that $A \cap S = A \cap S_A$ and $B \cap S = B \cap S_B$. Since $A,B \subset X$ are closed by assumption, this means that $A \setminus S, B \setminus S \subset X$ are still closed, hence that $X \setminus (A \setminus S), X \setminus (B \setminus S) \subset X$ are open. Now observe that (by [[de Morgan duality]]) \begin{displaymath} \begin{aligned} S & = X \setminus (X \setminus S) \\ & = X \setminus ( (A \cup B) \setminus S ) \\ & = X \setminus ( (A \setminus S) \cup (B \setminus S) ) \\ & = (X \setminus (A \setminus S)) \cap (X \setminus (B \setminus S)) \,. \end{aligned} \end{displaymath} This exhibits $S$ as the intersection of two open subsets, hence as open. \end{proof} \begin{example} \label{attach}\hypertarget{attach}{} If $X, Y, Z$ are [[normal topological spaces]] and $h: X \to Z$ is a [[closed embedding of topological spaces]] and $f: X \to Y$ is a [[continuous function]], then in the [[pushout]] diagram in $Top$ (example \ref{PushoutInTop}) \begin{displaymath} \itexarray{ X & \stackrel{h}{\to} & Z \\ \mathllap{f} \downarrow & & \downarrow \mathrlap{g} \\ Y & \underset{k}{\to} & W, } \end{displaymath} the space $W$ is normal and $k: Y \to W$ is a closed embedding. \end{example} For \textbf{proof} of this and related statements see at \emph{[[colimits of normal spaces]]}. \hypertarget{relation_with_}{}\subsubsection*{{Relation with $Set$}}\label{relation_with_} Write [[Set]] for the [[category]] of [[sets]]. \begin{defn} \label{ForgetfulFunctorFromTopToSet}\hypertarget{ForgetfulFunctorFromTopToSet}{} Write \begin{displaymath} U \colon Top \longrightarrow Set \end{displaymath} for the [[forgetful functor]] that sends a topological space $X = (S,\tau)$ to its underlying set $U(X) = S \in Set$ and which regards a [[continuous function]] as a plain [[function]] on the underlying sets. \end{defn} Prop. \ref{DescriptionOfLimitsAndColimitsInTop} means in particular that: \begin{prop} \label{}\hypertarget{}{} The category [[Top]] has all small [[limits]] and [[colimits]]. The [[forgetful functor]] $U \colon Top \to Set$ from def. \ref{ForgetfulFunctorFromTopToSet} [[preserved limit|preserves]] and [[lifted limit|lifts]] limits and colimits. \end{prop} (But it does not [[created limit|create]] or [[reflected limit|reflect]] them.) \begin{prop} \label{}\hypertarget{}{} The [[forgetful functor]] $U$ from def. \ref{ForgetfulFunctorFromTopToSet} has a [[left adjoint]] $disc$, given by sending a [[set]] $S$ to the corresponding [[discrete topological space]], example \ref{DiscreteTopologicalSpaceAsCoproduct} \begin{displaymath} Top \stackrel{\overset{disc}{\longleftarrow}}{\underset{U}{\longrightarrow}} Set \,. \end{displaymath} \end{prop} \begin{prop} \label{topcat}\hypertarget{topcat}{} The [[forgetful functor]] $U$ from def. \ref{ForgetfulFunctorFromTopToSet} exhibits $Top$ as \begin{itemize}% \item a [[concrete category]] \item a [[topological concrete category]]. \end{itemize} \end{prop} \hypertarget{MonoEpiMorphisms}{}\subsubsection*{{Mono-/Epimorphisms}}\label{MonoEpiMorphisms} \begin{prop} \label{SubspaceInclusionsAreRegularMonos}\hypertarget{SubspaceInclusionsAreRegularMonos}{} \textbf{([[regular monomorphisms]] of [[topological spaces]])} In the [[category]] [[Top]] of [[topological space]], \begin{enumerate}% \item the [[monomorphisms]] are the those [[continuous functions]] which are [[injective functions]]; \item the [[regular monomorphisms]] are the [[topological embeddings]] (i.e. those continuous functions which are [[homeomorphisms]] onto their [[images]] equipped with the [[subspace topology]]). \end{enumerate} \end{prop} \begin{proof} Regarding the first statement: An injective continuous function $f \colon X \to Y$ clearly has the cancellation property that defines monomorphisms: for parallel continuous functions $g_1,g_2 \colon Z \to X$: if $f \circ g_1 = f \circ g_1$, then $g_1 = g_2$ because continuous functions are equal precisely if their underlying functions of sets are equal. Conversely, if $f$ has the cancellation property, then testing on points $g_1, g_2 \colon \ast \to X$ gives that $f$ is injective. Regarding the second statement: from the construction of [[equalizers]] in [[Top]] (example \ref{EqualizerInTop}) we have that these are topological subspace inclusions. Conversely, let $i \colon X \to Y$ be a [[topological subspace embedding]]. We need to show that this is the equalizer of some pair of parallel morphisms. To that end, form the [[cokernel pair]] $(i_1, i_2)$ by taking the [[pushout]] of $i$ against itself (in the category of sets, and using the [[quotient topology]] on a [[disjoint union space]]). By \href{regular+monomorphism#RegEquEff}{this prop.}, the equalizer of that pair is the set-theoretic equalizer of that pair of functions endowed with the [[subspace topology]]. Since monomorphisms in [[Set]] are regular, we get the function $i$ back, and again by example \ref{EqualizerInTop}, it gets equipped with the subspace topology. This completes the proof. \end{proof} \hypertarget{intersections_and_quotients}{}\subsubsection*{{Intersections and quotients}}\label{intersections_and_quotients} \begin{lemma} \label{pushout}\hypertarget{pushout}{} The [[pushout]] in [[Top]] of any (closed/open) [[topological subspace]] inclusion $i \colon A \hookrightarrow B$, example \ref{TopologicalSubspace}, along any [[continuous function]] $f \colon A \to C$ is itself an a (closed/open) subspace $j \colon C \hookrightarrow D$. \end{lemma} For proof see \href{subspace+topology#pushout}{there}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[topological concrete category]] \item [[Ho(Top)]] \item [[convenient category of topological spaces]] \item [[TopGrp]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For general references see those listed at \emph{[[topology]]}, such as \begin{itemize}% \item [[Nicolas Bourbaki]], chapter 1 \emph{Topological Structures} of \emph{Elements of Mathematics III: General topology}, Springer 1971, 1990 \end{itemize} See also \begin{itemize}% \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, section 12 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \end{itemize} An axiomatic desciption of $Top$ along the lines of [[ETCS]] for [[Set]] is discussed in \begin{itemize}% \item Dana Schlomiuk, \emph{An elementary theory of the category of topological space}, Transactions of the AMS, volume 149 (1970) \end{itemize} category: category [[!redirects category of topological spaces]] \end{document}