\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Topological Quantum Field Theories from Compact Lie Groups} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] This entry is about the article \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{Topological Quantum Field Theories from Compact Lie Groups} in P. R. Kotiuga (ed.) \emph{A celebration of the mathematical legacy of Raoul Bott} AMS (2010) (\href{http://arxiv.org/abs/0905.0731}{arXiv:0905.0731}) \end{itemize} on \begin{enumerate}% \item in sections 3 and 8; a central topic in [[higher category theory and physics]]: the [[higher category theory|abstract higher categoretic]] conception of [[path integral]] [[quantization]] of classical [[action functionals]] to [[FQFT|extended quantum field theories]], realized here for finite [[higher gauge theories]] [[Dijkgraaf-Witten theory]]-type theories (see also at [[prequantum field theory]]) \item the [[extended TQFT]]-[[quantization]] of $G$-[[Chern-Simons theory]] for abelian [[Lie groups]] $G$. \end{enumerate} More on the story of sections 3 and 8 is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Ambidexterity in K(n)-Local Stable Homotopy Theory]]}, talk at \emph{Notre Dame Graduate Summer School on Topology and Field Theories} and \emph{Harvard lecture} 2012 (\href{http://www.youtube.com/watch?v=eQayYLDw1VA}{video part 1}, \href{http://www.youtube.com/watch?v=OEShrQyvmS4}{part 2}, \href{http://www.youtube.com/watch?v=nOIcdn1iUR4}{part 3} \href{http://www.youtube.com/watch?v=ZwnClYedaYM}{part 4}, \href{http://www.math.northwestern.edu/~celliott/notre_dame_notes/Lurie_notes.pdf}{pdf lecture notes} by Chris Elliott) \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{the_general_abstract_notion_of_quantization_for_discrete_theories}{The general abstract notion of quantization for discrete theories}\dotfill \pageref*{the_general_abstract_notion_of_quantization_for_discrete_theories} \linebreak \noindent\hyperlink{3dCSFullyExtended}{3d Chern-Simons as a fully extended TQFT}\dotfill \pageref*{3dCSFullyExtended} \linebreak \noindent\hyperlink{cs_as_a_fully_extended_tqft}{CS as a fully extended TQFT}\dotfill \pageref*{cs_as_a_fully_extended_tqft} \linebreak \noindent\hyperlink{boundary_conditions_wzw_theory}{Boundary conditions: WZW theory}\dotfill \pageref*{boundary_conditions_wzw_theory} \linebreak \noindent\hyperlink{related_references}{Related references}\dotfill \pageref*{related_references} \linebreak \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} The non-toy example application that gives the paper its title is to [[Chern-Simons theory]]. The notion of quantization discussed builds on the notion of $(\infty,n)$-categories of \emph{families of $\infty$-groupoids} that appears in some of the later sections of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} . \end{itemize} Together with a notion of $n$-vector spaces (the [[vertical categorification]] of [[vector space]] and [[2-vector space]]) the article sketches a general abstract formalsim making precise the notion of [[path integral]] [[quantization]] for ``finite'' theories such as [[Dijkgraaf-Witten theory]]. The development, sketching a rather grand picture, remains somewhat sketchy, though, possibly due to the fact that this is a conference proceedings. Also some of the ideas claimed to now be fully generalized have appeared elsewhere before. Notably the notion of the quantization map $Fam_n(C) \to C$ (see below) is effectively what [[John Baez]], [[Jim Dolan]] call in their program on [[groupoidification]] call \emph{degroupoidification} . The general idea underlying this, that spaces of states are computed as colimits of sections, has been made clear previously by [[Simon Willerton]] \emph{The twisted Drinfeld double of a finite group via gerbes and finite groupoids} (\href{http://arxiv.org/abs/math.QA/0503266}{arXiv:math/0503266}) \hypertarget{the_general_abstract_notion_of_quantization_for_discrete_theories}{}\subsection*{{The general abstract notion of quantization for discrete theories}}\label{the_general_abstract_notion_of_quantization_for_discrete_theories} \begin{quote}% Here is a summary of the general quantization aspect of the article, together with some additional remarks on how to think of all this by [[Urs Schreiber|an nLab author]]. \end{quote} The following is the formalization of the notion of [[quantization]] for discrete theories (such as [[Dijkgraaf-Witten theory]]) as presented in the article. Fix some $n \in \mathbb{N}$, the dimension of the [[quantum field theory]] to be described. In \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} . \end{itemize} are described the following two [[(∞,n)-category|(∞,n)-categories]] \begin{itemize}% \item the [[(∞,n)-category of cobordisms]] $Bord_n$: its [[k-morphism]]s are roughly $k$-dimensional [[manifold]]s with boundaries and corners; \item for $C$ any [[(∞,n)-category]] the [[(∞,n)-category of spans]] over $C$, denoted $Fam_n(C)$, whose \begin{itemize}% \item [[object]]s are [[∞-groupoid]]s $P$ equipped with functors $F_P :P \to C$ \item [[morphism]]s are [[span]]s of [[∞-groupoid]]s with [[natural transformation]]s between the corresponding functors ([[bi-brane]]s) \begin{displaymath} \itexarray{ && P \\ & \swarrow && \searrow \\ P_{in} &&\swArrow&& P_{out} \\ & {}_{\mathllap{\exp(S(-))_{in}}}\searrow && \swarrow_{\mathrlap{\exp(S(-))_{out}}} \\ && C } \end{displaymath} \item ``and so on''. \end{itemize} \end{itemize} For the application to [[quantization]] of [[sigma-model]] theories we want to be thinking of the data encoded by these $(\infty,n)$-categories as follows: \begin{itemize}% \item An [[k-morphism]] $\Sigma$ in $Bord_n$ is a piece of $k$-dimensional ``worldvolume'' of some extended object, whose quantum dynamics we want to describe; we may roughly think of this as a [[cospan]] \begin{displaymath} \itexarray{ && \Sigma \\ & \nearrow && \nwarrow \\ \Sigma_{in} &&&& \Sigma_{out} } \end{displaymath} where $\Sigma_{in}$ and $\Sigma_{out}$ are pieces of the boundary of $\Sigma$. We think of $\Sigma_{in}$ as the ``incoming'' piece of the object that we want to describe, which then experiences a self-interaction as described by the topology of $\Sigma$ and comes out in the shape of $\Sigma_{out}$ (for instace $\Sigma$ might be the three-holed sphere, $\Sigma_{in}$ the disjoint unions of two of its bounding circles and $\Sigma_{out}$ the remaining one, modelling the interaction where two strings merge to a single one). \item An [[morphism]] in $Fam_n(C)$ is to be thought of as \begin{itemize}% \item two \textbf{configuration spaces of fields} $P_{in}, P_{out}$ of some field theory; \item together with an [[action functional]] on it in the form of an higher vector bundle (``[[gerbe]]'') $\exp(S_P()) : P \to C$; being the component of the [[natural transformation]] that assigns to each \emph{path} $P$ between field configuration a \emph{phase} ; \end{itemize} \end{itemize} In these terms the \textbf{kinematics of a classical field theory} is a choice of $(\infty,n)$-functor \begin{displaymath} kin : Bord_n \to Fam_n(*) \end{displaymath} whereas the \textbf{dynamics of a classical field theory} -- the specificaton of an [[action functional]] on the given configuration spaces, is a lift of that to $Fam_n(C)$ \begin{displaymath} \itexarray{ && Fam_n(C) \\ & {}^{\exp(S(-))}\nearrow & \downarrow \\ Bord_n &\stackrel{kin}{\to}& Fam_n(*) } \end{displaymath} To illustrate this: specifically, if we consider a [[sigma-model]] [[quantum field theory]] that is induced from a \textbf{target space} geometry $X$, such that a field configuration on $\Sigma$ is a morphism $\phi : \Sigma \to X$, and with a [[gauge field|background field]] $\nabla : X \to C$, then we think of the corresponding functor \begin{displaymath} conf_X : Bord_n \to Fam_n(C) \end{displaymath} as given by homming a [[cobordism]] [[cospan]] of the form \begin{displaymath} \itexarray{ && \Sigma \\ & \nearrow && \nwarrow \\ \Sigma_{in} &&&& \Sigma_{out} } \end{displaymath} into $X$ to produce a [[span]] of path and configuration spaces \begin{displaymath} \itexarray{ && [\Sigma,X] \\ & \swarrow && \searrow \\ [\Sigma_{in},X] &&&& [\Sigma_{out},X] } \end{displaymath} equipped with the \textbf{transgressed background field} as the corresponding action functional \begin{displaymath} \itexarray{ && [\Sigma, X] \\ & \swarrow && \searrow \\ [\Sigma_{in},X] &&&& [\Sigma_{out},X] \\ & \searrow && \swarrow \\ && C } \,. \end{displaymath} With that in hand, the \textbf{[[quantization]]} of the given classical field theory $\exp(S(-)) : Bord_n \to Fam_n(C)$ is its ``pushforward to the point'', given by postcomposition with a functor \begin{displaymath} \int : Fam_n(C) \to C \end{displaymath} that over objects $\exp(S(-)) : P \to C$ is given by taking $n$-categorical [[colimit]] \begin{displaymath} (\exp(S(-)) : P \to C) \mapsto (\lim_\to \exp(S(-))) \end{displaymath} which in terms of [[coend]]-notation is indeed nicely suggestively written as \begin{displaymath} (\exp(S(-)) : P \to C) \mapsto (\int \exp(S(-))) \,. \end{displaymath} Taking such a colimit may be thought of as forming the space of [[section]]s of the action functional $n$-vector bundle $\exp(S(-)) : P \to C$. That this is the right general idea was maybe first amplified in \begin{itemize}% \item [[Dan Freed]], \emph{Higher Algebraic Structures and Quantization} (\href{http://arxiv.org/abs/hep-th/9212115}{arXiv:hep-th/9212115}. \end{itemize} A first more categorical formulation of this is in \begin{itemize}% \item [[Simon Willerton]] \emph{The twisted Drinfeld double of a finite group via gerbes and finite groupoids} (\href{http://arxiv.org/abs/math.QA/0503266}{arXiv:math/0503266}) \end{itemize} What exactly the functor $\int : Fam_n(C) \to C$ does to [[k-morphism]]s is apparently left as an exercise for the inclined reader. it requires that in $C$ limits and colimits coincide. This is the case notably for $C = Vect$. The authors indicate in section 8 a general recursive procedure for defining higher categories of higher vector spaces, by iterating the bimodule-style definition of [[2-vector space]]s, as described there. This yields a notion $C = n Vect$, which should be the right codomain for $n$-dimensional QFTs. So we end up with a diagram \begin{displaymath} \itexarray{ && Fam_n(C) &\stackrel{\int}{\to}& C \\ & {}^{\exp(S(-))}\nearrow & \downarrow \\ Bord_n &\stackrel{kin}{\to}& Fam_n(*) } \end{displaymath} whose left bit is the kinematical and dynamical input given by a classical field theory, and whose composition to to the right is supposed to give the corresponding quantum field theory, which by the logic motivating the [[cobordism hypothesis]] is a functor $Z : Bord_n \to n Vact$: \begin{displaymath} Z_S = \int \exp(S(-)) : Bord_n \stackrel{\exp(S(-))}{\to} Fam_n(n Vect) \stackrel{\int}{\to} n Vect \,. \end{displaymath} \hypertarget{3dCSFullyExtended}{}\subsection*{{3d Chern-Simons as a fully extended TQFT}}\label{3dCSFullyExtended} A summary of the FHLT-argument about realizing 3d [[Chern-Simons theory]] as a fully [[extended TQFT]] is given in \begin{itemize}% \item [[Konrad Waldorf]], \emph{Chern-Simons theory and the categorified group ring} ([[WaldorfTalbot2010.pdf:file]]) \end{itemize} The following are some notes from a talk by [[Constantin Teleman]] on joint work with [[Dan Freed]], given at \href{http://maths-old.anu.edu.au/esi/2012/}{ESI Program on K-Theory and Quantum Fields (2012)}. \hypertarget{cs_as_a_fully_extended_tqft}{}\subsubsection*{{CS as a fully extended TQFT}}\label{cs_as_a_fully_extended_tqft} Goals \begin{itemize}% \item i) describe [[Chern-Simons theory]] for compact Lie groups as an [[extended TQFT]], generated by some structure assigned to the point \item ii) relate to chiral [[WZW model]], also down to the point, have a formal framework for this \end{itemize} approach related to: \begin{itemize}% \item [[Kevin Walker]]: 3d Chern-Simons theory is best understood as a boundary condition for a 4d theory. \item [[Chris Douglas]], [[Andre Henriques]]: \emph{[[conformal nets]]} and their relation to CS theory \end{itemize} construction is special case of [[Reshetikhin-Turaev construction]] which to a [[modular tensor category]] $\mathcal{B}$ assigns a 1-2-3 [[extended TQFT]] that assigns $\mathcal{B}$ to the [[circle]] $S^1$. So the goal here is to extend this down to the point, to a 0-1-2-3 [[extended TQFT]], hence to an $(\infty,3)$-functor \begin{displaymath} Bord^{String}_{0,1,2,3} \to some\;symm\;mon.\;3\; category \end{displaymath} the standard choice on the right is a 3-category of (multi) [[fusion categories]], (see the reference by Douglas, Schommer-Pries and Snyder there) whose \begin{itemize}% \item [[objects]] are [[fusion categories]]; \item [[morphisms]] are bimodule categories; \item [[2-morphisms]]: bimodule homomorphism functors; \item [[n-morphisms|3-morphisms]]: [[natural transformations]] of these. \end{itemize} If this can be done, then \begin{itemize}% \item $CS(*) = T$; \item $CS(S^1) =$ [[Drinfeld center]] of $T$ (again an MTC) \end{itemize} [[Witt group]] of [[modular tensor category]]: many abelian examples of CS give nontrivial classes \textbf{Theorem} Given a [[modular tensor category]] $A$, there exists a [[symmetric monoidal (infinity,n)-category|symmetric monoidal 3-category]] $\mathcal{C}_A$ containing the [[fusion categories]] and a [[fully dualizable object]] in $X \in \mathcal{C}_A$ which [[cobordism hypothesis|generates]] a 0-1-2-3 [[extended TQFT]] whose 1-2-3 part agrees with the [[Reshetikhin-Turaev construction]] applied to $A$. Here $\mathcal{C}_A$ and $X$ are formally constructed form $A$ by means of \begin{itemize}% \item $X \otimes X^\vee \simeq A$ \item $\mathcal{C}_A = FusionCat[X, X^\vee]$ \end{itemize} \textbf{Remarks} \begin{itemize}% \item i) This is a theory for ``[[string structure]]'' manifolds in the sense that the [[first Stiefel-Whitney class]] $w_1$ and the [[first Pontryagin class]] $p_1$ are trivialized, but not necessarily $w_2$. \item ii) This is the universal extension: every other one factors through it. guess: there is some kind of an ``algebraic extension'' of fusion categories in which the equation $X \otimes X^\vee = A$ can be solved for any MTC $A$. \item iii) a choice of cube root wil be needed to construct the theory for a [[framed manifold|framed]] 3-manifold change of framing: $n \mapsto \times \exp(\frac{2 \pi i c n }{24})$ for $c$ a ``[[central charge]]'' \end{itemize} because string [[bordism ring|bordism group]] in $dim = 3$ is $\mathbb{Z}_3$, in case of [[spin structure]] \begin{displaymath} \itexarray{ 3 & \mathbb{Z}_{24} \\ 2 & \mathbb{Z}_2 \\ 1 & \mathbb{Z}_2 } \end{displaymath} for spin theories one would need categorical representations of this 3-groupoid, but at the moment not known. \textbf{Theorem} ([[Kevin Walker]], in [[Jacob Lurie]]`s language) \begin{itemize}% \item i) $A$ generates an invertible 4d [[extended TQFT]] for [[orientation|oriented]] manifolds; \item ii) $A$ is a valid boundary condition over itself; \end{itemize} The 3d boundary theory in dim 1-2-3 is equivalent to $ReshTur(A)$ after a choice of ``bulking manifold'' \textbf{Comments} there is a symmetric monoidal 4-category whose \begin{itemize}% \item objects are bimodule tensor categories \item morphisms are bialgebra categories = tensor categories $T$ with braided monoidal functors $(B') \otimes B^{bop} \to DZ(T)$ \item 2-morphisms are bimodule categories \item 3-morphisms are functors respecting the structure; \item 4-morphisms are natural transformations between these. \end{itemize} Invertibility of a TQFT $Z$ $\Leftrightarrow$ invertibility of $Z(*)$. so then $Z(S^1) \simeq 1$ \textbf{Lemma} [[modular tensor categories]] are invertible in this sense (4d anomaly theory) + (bulking manifold) = (3d standalone theory) \textbf{Result} Have a 3d TQFT defined on the full subcategory of $Bord^String_{0-1-2-3-4}$ of manifolds which bound. So the final step in the construction of the full 0-1-2-3-4 theory is to extend from that to the full category of bordisms. \hypertarget{boundary_conditions_wzw_theory}{}\subsubsection*{{Boundary conditions: WZW theory}}\label{boundary_conditions_wzw_theory} general metaphor: \begin{itemize}% \item TQFT $\leftrightarrow$ algebra \item boundary condition $\leftrightarrow$ bimodule \end{itemize} other metaphor \begin{itemize}% \item TQFT $Z$ determined by $Z(*)$ \item boundary condition $\alpha : 1 \to Z(*)$ (left) or $\beta : Z(*) \to 1$ (right) \end{itemize} For the 3d RT theory this yields for boundary conditions $DZ(T)$-algebra categories. \textbf{Theorem} ([[Graeme Segal]]) Chiral WZW model is a conformal boundary for CS theory \textbf{Problem} make this work down to the point \hypertarget{related_references}{}\subsection*{{Related references}}\label{related_references} \begin{itemize}% \item [[Dan Freed]], \emph{[[4-3-2 8-7-6]]} \end{itemize} category: reference \end{document}