\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{related_2categories}{Related 2-categories}\dotfill \pageref*{related_2categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{from_topological_spaces_to_toposes}{From topological spaces to toposes}\dotfill \pageref*{from_topological_spaces_to_toposes} \linebreak \noindent\hyperlink{from_toposes_to_higher_toposes}{From toposes to higher toposes}\dotfill \pageref*{from_toposes_to_higher_toposes} \linebreak \noindent\hyperlink{AdjunctionToLocallyPresentable}{From locally presentable categories to toposes}\dotfill \pageref*{AdjunctionToLocallyPresentable} \linebreak \noindent\hyperlink{Limits}{Limits and colimits}\dotfill \pageref*{Limits} \linebreak \noindent\hyperlink{Colimits}{Colimits}\dotfill \pageref*{Colimits} \linebreak \noindent\hyperlink{Pullbacks}{Pullbacks}\dotfill \pageref*{Pullbacks} \linebreak \noindent\hyperlink{free_loop_spaces}{Free loop spaces}\dotfill \pageref*{free_loop_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} By \textbf{$Topos$} (or \textbf{$Toposes$}) is denoted the [[category]] of [[topos]]es. Usually this means: \begin{itemize}% \item [[object]]s are [[topos]]es; \item [[morphism]]s are [[geometric morphism]]s of toposes. \end{itemize} This is naturally a [[2-category]], where \begin{itemize}% \item [[2-morphism]] are [[geometric transformation]]s \end{itemize} That is, a 2-morphism $f\to g$ is a [[natural transformation]] $f^* \to g^*$ (which is, by [[mate]] calculus, equivalent to a natural transformation $g_* \to f_*$ between [[direct image]]s). Thus, $Toposes$ is equivalent to both of \begin{itemize}% \item the (non-full) [[sub-2-category]] of $Cat^{op}$ on categories that are toposes and morphisms that are the inverse image parts of geometric morphisms, and \item the (non-full) sub-2-category of $Cat^{co}$ on categories that are toposes and morphisms that are the direct image parts of geometric morphisms. \end{itemize} \hypertarget{related_2categories}{}\subsubsection*{{Related 2-categories}}\label{related_2categories} \begin{itemize}% \item There is also the sub-2-category $ShToposes = GrToposes$ of [[sheaf topos]]es (i.e. Grothendieck toposes). \item Note that in some literature this 2-category is denoted merely $Top$, but that is also commonly used to denote [[Top|the category]] of [[topological spaces]]. \item We obtain a very different 2-category of toposes if we take the morphisms to be [[logical functors]]; this 2-category is sometimes denoted $Log$ or $LogTopos$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{from_topological_spaces_to_toposes}{}\subsubsection*{{From topological spaces to toposes}}\label{from_topological_spaces_to_toposes} The operation of forming [[categories of sheaves]] \begin{displaymath} Sh(-) : Top \to ShToposes \end{displaymath} embeds [[topological space]]s into toposes. For $f : X \to Y$ a [[continuous map]] we have that $Sh(f)$ is the [[geometric morphism]] \begin{displaymath} Sh(f) : Sh(X) \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} Sh(Y) \end{displaymath} with $f_*$ the [[direct image]] and $f^*$ the [[inverse image]]. Strictly speaking, this functor is not an [[embedding]] if we consider $Top$ as a 1-category and $Toposes$ as a 2-category, since it is then not [[fully faithful]] in the 2-categorical sense---there can be nontrivial 2-cells between geometric morphisms between toposes of sheaves on topological spaces. However, if we regard $Top$ as a [[(1,2)-category]] where the 2-cells are inequalities in the [[specialization ordering]], then this functor does become a 2-categorically full embedding (i.e. an equivalence on hom-categories) if we restrict to the full subcategory $SobTop$ of [[sober spaces]]. This embedding can also be extended from $SobTop$ to the entire category of [[locales]] (which can be viewed as ``Grothendieck 0-toposes''). \hypertarget{from_toposes_to_higher_toposes}{}\subsubsection*{{From toposes to higher toposes}}\label{from_toposes_to_higher_toposes} There are similar full embeddings $ShTopos \hookrightarrow Sh 2 Topos$ and $ShTopos \hookrightarrow Sh(n,1)Topos$ of sheaf (1-)toposes into [[2-sheaf]] [[2-topos]]es and sheaf [[(n,1)-topos]]es for $2\le n\le \infty$. Note that these embeddings are \emph{not} the identity functor on underlying categories: a 1-topos is not itself an $n$-topos, instead we have to take $n$-sheaves on a suitable generating [[site]] for it. \hypertarget{AdjunctionToLocallyPresentable}{}\subsubsection*{{From locally presentable categories to toposes}}\label{AdjunctionToLocallyPresentable} There is a canonical [[forgetful functor]] $U : Topos \to$ [[Cat]] that lands, by definition, in the sub-2-category of [[locally presentable categories]] and [[functors]] which preserve all limits / are [[right adjoints]]. This [[2-functor]] has a [[2-adjunction|right 2-adjoint]] (\hyperlink{BungeCarboni}{Bunge-Carboni}). \hypertarget{Limits}{}\subsubsection*{{Limits and colimits}}\label{Limits} The 2-category $Topos$ is not all that well-endowed with [[limits]], but its [[slice categories]] are finitely complete [[2-limit|as 2-categories]], and $ShTopos$ is closed under finite limits in $Topos/Set$. In particular, the [[terminal object]] in $ShToposes$ is the topos [[Set]] $\simeq Sh(*)$. \hypertarget{Colimits}{}\paragraph*{{Colimits}}\label{Colimits} The supply with colimits is better: \begin{prop} \label{ColimitsByInverseImageLimits}\hypertarget{ColimitsByInverseImageLimits}{} All small (indexed) [[2-colimit]]s in $ShTopos$ exists and are computed as (indexed) [[2-limit]]s in [[Cat]] of the underlying [[inverse image]] functors. \end{prop} This appears as (\hyperlink{Moerdijk}{Moerdijk, theorem 2.5}) \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} \itexarray{ \mathcal{F} &\stackrel{p_2}{\to}& \mathcal{E}_2 \\ {}^{\mathllap{p_1}}\downarrow &\swArrow& \downarrow^{\mathrlap{f_2}} \\ \mathcal{E}_1 &\underset{f_1}{\to}& \mathcal{E} } \end{displaymath} be a [[2-pullback]] in $Topos$ such that \begin{itemize}% \item $f_1, f_2$ are both [[pseudomonic morphism]]s \item $\mathcal{E}_1 \coprod \mathcal{E}_2 \to \mathcal{E}$ is an [[effective epimorphism]]; \end{itemize} then the diagram of [[inverse image]] functors \begin{displaymath} \itexarray{ \mathcal{F} &\stackrel{p_2^*}{\leftarrow}& \mathcal{E}_2 \\ {}^{\mathllap{p_1^*}}\uparrow &\swArrow& \uparrow^{\mathrlap{f_2^*}} \\ \mathcal{E}_1 &\underset{f_1^*}{\leftarrow}& \mathcal{E} } \end{displaymath} is a 2-pullback in [[Cat]] and so by the \hyperlink{ColimitsByInverseImageLimits}{above} the original square is also a 2-pushout. \end{prop} This appears as theorem 5.1 in (\hyperlink{BungeLack}{BungeLack}) \begin{prop} \label{}\hypertarget{}{} The 2-category $Topos$ is an [[extensive category]]. Same for toposes bounded over a base. \end{prop} This is in (\hyperlink{BungeLack}{BungeLack, proposition 4.3}). \hypertarget{Pullbacks}{}\paragraph*{{Pullbacks}}\label{Pullbacks} \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} \itexarray{ && \mathcal{X} \\ && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } \end{displaymath} be a [[diagram]] of [[toposes]]. Then its [[pullback]] in the [[(2,1)-category]] version of $Topos$ is computed, roughly, by the [[pushout]] of their [[sites]] of definition. More in detail: there exist [[sites]] $\tilde \mathcal{D}$, $\mathcal{D}$, and $\mathcal{C}$ with [[finite limit]]s and [[morphisms of sites]] \begin{displaymath} \itexarray{ && \mathcal{D} \\ && \uparrow^{\mathrlap{g}} \\ \tilde \mathcal{D} &\stackrel{f}{\leftarrow}& \mathcal{C} } \end{displaymath} such that \begin{displaymath} \left( \itexarray{ && \mathcal{X} \\ && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } \right) \,\,\, \simeq \,\,\, \left( \itexarray{ && Sh(\mathcal{D}) \\ && \downarrow^{\mathrlap{(Lan_g \dashv (-)\circ g)}} \\ Sh(\tilde \mathcal{D}) &\stackrel{(Lan_f \dashv (-)\circ f)}{\to}& Sh(\mathcal{C}) } \right) \,. \end{displaymath} Let then \begin{displaymath} \itexarray{ \tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D} &\stackrel{f'}{\leftarrow}& \mathcal{D} \\ {}^{\mathllap{g'}}\uparrow &\swArrow_{\simeq}& \uparrow^{\mathrlap{g}} \\ \tilde \mathcal{D} &\stackrel{f}{\leftarrow}& \mathcal{C} } \,\,\,\,\, \in Cat^{lex} \end{displaymath} be the [[pushout]] of the underlying [[categories]] in the [[full subcategory]] [[Cat]]${}^{lex} \subset Cat$ of categories with finite limits. Let moreover \begin{displaymath} Sh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) \hookrightarrow PSh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) \end{displaymath} be the [[reflective subcategory]] obtained by [[localization]] at the class of morphisms generated by the inverse image $Lan_{f'}(-)$ of the [[covering]]s of $\mathcal{D}$ and the inverse image $Lan_{g'}(-)$ of the coverings of $\tilde \mathcal{D}$. Then \begin{displaymath} \itexarray{ Sh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) &\to& \mathcal{X} \\ \downarrow && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } \end{displaymath} is a [[pullback]] square. \end{prop} This appears for instance as (\hyperlink{Lurie}{Lurie, prop. 6.3.4.6}). \begin{remark} \label{}\hypertarget{}{} For [[localic toposes]] this reduces to the statement of [[localic reflection]]: the pullback of toposes is given by the of the underlying [[locales]] which in turn is the [[pushout]] of the corresponding [[frames]]. \end{remark} \hypertarget{free_loop_spaces}{}\subsubsection*{{Free loop spaces}}\label{free_loop_spaces} The [[free loop space object]] of a topos in [[Topos]] is called the [[isotropy group of a topos]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{Topos} \item [[(∞,1)Topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The characterization of colimits in $Topos$ is in \begin{itemize}% \item [[Ieke Moerdijk]], \emph{The classifying topos of a continuous groupoid. I} Transaction of the American mathematical society Volume 310, Number 2, (1988) (\href{http://www.ams.org/journals/tran/1988-310-02/S0002-9947-1988-0973173-9/S0002-9947-1988-0973173-9.pdf}{pdf}) \end{itemize} The fact that $Topos$ is extensive is in \begin{itemize}% \item [[Marta Bunge]], [[Steve Lack]], \emph{van Kampen theorem for toposes} (\href{http://www.maths.usyd.edu.au/u/stevel/papers/vkt.ps.gz}{ps}) \end{itemize} Limits and colimits of toposes are discussed in 6.3.2-6.3.4 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} There this is discussed for for [[(∞,1)-topos]]es, but the statements are verbatim true also for ordinary toposes (in the [[(2,1)-category]] version of $Topos$). The adjunction between toposes and locally presentable categories is discussed in \begin{itemize}% \item [[Marta Bunge]], [[Aurelio Carboni]], \emph{The symmetric topos}, Journal of Pure and Applied Algebra 105:233-249, (1995) \end{itemize} category: category [[!redirects Topos]] [[!redirects Topoi]] [[!redirects Toposes]] \end{document}