\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Toposes, Triples, and Theories} Toposes, Triples, and Theories by [[Michael Barr]], and [[Charles Wells]], was published in as Grundlehren der math. Wissenschaften 278. Springer-Verlag, 1983, and has been \href{http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html}{republished} in the [[TAC reprints series]]. \hypertarget{contents}{}\subsection*{{Contents}}\label{contents} \hypertarget{preface}{}\subsection*{{Preface}}\label{preface} \hypertarget{1_categories}{}\subsubsection*{{1. Categories}}\label{1_categories} \hypertarget{1_definition_of_category__________1}{}\paragraph*{{1 Definition of category \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 1}}\label{1_definition_of_category__________1} \hypertarget{2_functors__________10}{}\paragraph*{{2 Functors \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{}\ldots{}10}}\label{2_functors__________10} \hypertarget{3_natural_transformations_________14}{}\paragraph*{{3 Natural transformations \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 14}}\label{3_natural_transformations_________14} \hypertarget{4_elements_and_subob_jects__________17}{}\paragraph*{{4 Elements and Subob jects \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 17}}\label{4_elements_and_subob_jects__________17} \hypertarget{5_the_yoneda_lemma___________22}{}\paragraph*{{5 The Yoneda Lemma \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 22}}\label{5_the_yoneda_lemma___________22} \hypertarget{6_pullbacks_____________25}{}\paragraph*{{6 Pullbacks \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 25}}\label{6_pullbacks_____________25} \hypertarget{7_limits_____________30}{}\paragraph*{{7 Limits \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 30}}\label{7_limits_____________30} \hypertarget{8_colimits____________40}{}\paragraph*{{8 Colimits \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 40}}\label{8_colimits____________40} \hypertarget{9_adjoint_functors___________46}{}\paragraph*{{9 Adjoint functors \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 46}}\label{9_adjoint_functors___________46} \hypertarget{10_filtered_colimits___________57}{}\paragraph*{{10 Filtered colimits \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 57}}\label{10_filtered_colimits___________57} \hypertarget{11_notes_to_chapter_i__________60}{}\paragraph*{{11 Notes to Chapter I \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 60}}\label{11_notes_to_chapter_i__________60} \hypertarget{2_toposes_62}{}\subsubsection*{{2. Toposes 62}}\label{2_toposes_62} \hypertarget{1_basic_ideas_about_toposes_________62}{}\paragraph*{{1 Basic Ideas about Toposes \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 62}}\label{1_basic_ideas_about_toposes_________62} \hypertarget{2_sheaves_on_a_space__________65}{}\paragraph*{{2 Sheaves on a Space \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 65}}\label{2_sheaves_on_a_space__________65} \hypertarget{3_properties_of_toposes__________72}{}\paragraph*{{3 Properties of Toposes \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 72}}\label{3_properties_of_toposes__________72} \hypertarget{4_the_beck_conditions__________77}{}\paragraph*{{4 The Beck Conditions \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 77}}\label{4_the_beck_conditions__________77} \hypertarget{5_notes_to_chapter_2___________80}{}\paragraph*{{5 Notes to Chapter 2 \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 80}}\label{5_notes_to_chapter_2___________80} \hypertarget{3_triples_82}{}\subsubsection*{{3. Triples 82}}\label{3_triples_82} \hypertarget{1_definition_and_examples__________82}{}\paragraph*{{1 Definition and Examples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 82}}\label{1_definition_and_examples__________82} \hypertarget{2_the_kleisli_and_eilenbergmoore_categories_____87}{}\paragraph*{{2 The Kleisli and Eilenberg-Moore Categories \ldots{} \ldots{} \ldots{} \ldots{} 87}}\label{2_the_kleisli_and_eilenbergmoore_categories_____87} \hypertarget{3_tripleability____________92}{}\paragraph*{{3 Tripleability \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 92}}\label{3_tripleability____________92} \hypertarget{4_properties_of_tripleable_functors_______103}{}\paragraph*{{4 Properties of Tripleable Functors \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 103}}\label{4_properties_of_tripleable_functors_______103} \hypertarget{5_sufficient_conditions_for_tripleability_______108}{}\paragraph*{{5 Sufficient Conditions for Tripleability \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 108}}\label{5_sufficient_conditions_for_tripleability_______108} \hypertarget{6_morphisms_of_triples__________110}{}\paragraph*{{6 Morphisms of Triples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 110}}\label{6_morphisms_of_triples__________110} \hypertarget{7_adjoint_triples____________114}{}\paragraph*{{7 Adjoint Triples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 114}}\label{7_adjoint_triples____________114} \hypertarget{8_historical_notes_on_triples_________120}{}\paragraph*{{8 Historical Notes on Triples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 120}}\label{8_historical_notes_on_triples_________120} \hypertarget{4_theories_122}{}\subsubsection*{{4. Theories 122}}\label{4_theories_122} \hypertarget{1_sketches____________123}{}\paragraph*{{1 Sketches \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 123}}\label{1_sketches____________123} \hypertarget{2_the_ehresmannkennison_theorem________127}{}\paragraph*{{2 The Ehresmann-Kennison Theorem \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 127}}\label{2_the_ehresmannkennison_theorem________127} \hypertarget{3_finiteproduct_theories_________129}{}\paragraph*{{3 Finite-Product Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 129}}\label{3_finiteproduct_theories_________129} \hypertarget{4_left_exact_theories___________135}{}\paragraph*{{4 Left Exact Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 135}}\label{4_left_exact_theories___________135} \hypertarget{5_notes_on_theories__________144}{}\paragraph*{{5 Notes on Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 144}}\label{5_notes_on_theories__________144} \hypertarget{5_properties_of_toposes_147}{}\subsubsection*{{5. Properties of Toposes 147}}\label{5_properties_of_toposes_147} \hypertarget{1_tripleability_of_p___________147}{}\paragraph*{{1 Tripleability of P \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 147}}\label{1_tripleability_of_p___________147} \hypertarget{2_slices_of_toposes___________149}{}\paragraph*{{2 Slices of Toposes \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 149}}\label{2_slices_of_toposes___________149} \hypertarget{3_logical_functors___________151}{}\paragraph*{{3 Logical Functors \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 151}}\label{3_logical_functors___________151} \hypertarget{4_toposes_are_cartesian_closed_________156}{}\paragraph*{{4 Toposes are Cartesian Closed \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 156}}\label{4_toposes_are_cartesian_closed_________156} \hypertarget{5_exactness_properties_of_toposes________158}{}\paragraph*{{5 Exactness Properties of Toposes \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 158}}\label{5_exactness_properties_of_toposes________158} \hypertarget{6_the_heyting_algebra_structure_on________165}{}\paragraph*{{6 The Heyting Algebra Structure on $\Omega$ \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 165}}\label{6_the_heyting_algebra_structure_on________165} \hypertarget{6_permanence_properties_of_toposes_169}{}\subsubsection*{{6. Permanence Properties of Toposes 169}}\label{6_permanence_properties_of_toposes_169} \hypertarget{1_topologies_____________169}{}\paragraph*{{1 Topologies \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 169}}\label{1_topologies_____________169} \hypertarget{2_sheaves_for_a_topology_________174}{}\paragraph*{{2 Sheaves for a Topology \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 174}}\label{2_sheaves_for_a_topology_________174} \hypertarget{3_sheaves_form_a_topos__________179}{}\paragraph*{{3 Sheaves form a topos \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 179}}\label{3_sheaves_form_a_topos__________179} \hypertarget{4_left_exact_cotriples__________181}{}\paragraph*{{4 Left exact cotriples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 181}}\label{4_left_exact_cotriples__________181} \hypertarget{5_left_exact_triples___________184}{}\paragraph*{{5 Left exact triples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 184}}\label{5_left_exact_triples___________184} \hypertarget{6_categories_in_a_topos__________188}{}\paragraph*{{6 Categories in a Topos \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 188}}\label{6_categories_in_a_topos__________188} \hypertarget{7_grothendieck_topologies__________194}{}\paragraph*{{7 Grothendieck Topologies \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 194}}\label{7_grothendieck_topologies__________194} \hypertarget{8_girauds_theorem__________198}{}\paragraph*{{8 Giraud's Theorem \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 198}}\label{8_girauds_theorem__________198} \hypertarget{7_representation_theorems_206}{}\subsubsection*{{7. Representation Theorems 206}}\label{7_representation_theorems_206} \hypertarget{1_freyds_representation_theorems_______206}{}\paragraph*{{1 Freyd's Representation Theorems \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 206}}\label{1_freyds_representation_theorems_______206} \hypertarget{2_the_axiom_of_choice__________210}{}\paragraph*{{2 The Axiom of Choice \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 210}}\label{2_the_axiom_of_choice__________210} \hypertarget{3_morphisms_of_sites__________214}{}\paragraph*{{3 Morphisms of Sites \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 214}}\label{3_morphisms_of_sites__________214} \hypertarget{4_delignes_theorem__________220}{}\paragraph*{{4 Deligne's Theorem \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 220}}\label{4_delignes_theorem__________220} \hypertarget{5_natural_number_objects__________221}{}\paragraph*{{5 Natural Number Objects \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 221}}\label{5_natural_number_objects__________221} \hypertarget{6_countable_toposes_and_separable_toposes______229}{}\paragraph*{{6 Countable Toposes and Separable Toposes \ldots{} \ldots{} \ldots{} \ldots{} . 229}}\label{6_countable_toposes_and_separable_toposes______229} \hypertarget{7_barrs_theorem____________234}{}\paragraph*{{7 Barr's Theorem \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 234}}\label{7_barrs_theorem____________234} \hypertarget{8_notes_to_chapter_7___________236}{}\paragraph*{{8 Notes to Chapter 7 \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 236}}\label{8_notes_to_chapter_7___________236} \hypertarget{8_cocone_theories_238}{}\subsubsection*{{8. Cocone Theories 238}}\label{8_cocone_theories_238} \hypertarget{1_regular_theories___________238}{}\paragraph*{{1 Regular Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 238}}\label{1_regular_theories___________238} \hypertarget{2_finite_sum_theories___________241}{}\paragraph*{{2 Finite Sum Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 241}}\label{2_finite_sum_theories___________241} \hypertarget{3_geometric_theories___________242}{}\paragraph*{{3 Geometric Theories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . . 242}}\label{3_geometric_theories___________242} \hypertarget{4_properties_of_model_categories________244}{}\paragraph*{{4 Properties of Model Categories \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 244}}\label{4_properties_of_model_categories________244} \hypertarget{9_more_on_triples_250}{}\subsubsection*{{9. More on Triples 250}}\label{9_more_on_triples_250} \hypertarget{1_duskins_tripleability_theorem________250}{}\paragraph*{{1 Duskin's Tripleability Theorem \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 250}}\label{1_duskins_tripleability_theorem________250} \hypertarget{2_distributive_laws__________257}{}\paragraph*{{2 Distributive Laws \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} 257}}\label{2_distributive_laws__________257} \hypertarget{3_colimits_of_triple_algebras_________262}{}\paragraph*{{3 Colimits of Triple Algebras \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 262}}\label{3_colimits_of_triple_algebras_________262} \hypertarget{4_free_triples____________267}{}\paragraph*{{4 Free Triples \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} \ldots{} . 267}}\label{4_free_triples____________267} \hypertarget{bibliography_273}{}\subsubsection*{{Bibliography 273}}\label{bibliography_273} \hypertarget{index_of_exercises_278}{}\subsubsection*{{Index of exercises 278}}\label{index_of_exercises_278} \hypertarget{index}{}\subsubsection*{{Index}}\label{index} \end{document}