\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Turing Category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{constructivism_realizability_computability}{}\paragraph*{{Constructivism, Realizability, Computability}}\label{constructivism_realizability_computability} [[!include constructivism - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{more_examples}{More Examples}\dotfill \pageref*{more_examples} \linebreak \noindent\hyperlink{weak_limits_and_exact_completions}{Weak Limits and Exact Completions}\dotfill \pageref*{weak_limits_and_exact_completions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A Turing category is a certain [[categorification]] of [[partial combinatory algebras]] based on [[restriction categories]]. \begin{defn} \label{TuringCategory}\hypertarget{TuringCategory}{} \textbf{(Turing category)} A \emph{Turing category} is a cartesian restriction category $(\mathcal{C}, \bar{} )$ with a fixed object A and morphism $\bullet : A \times A \rightarrow A$ having the following universal property: for each $\mathcal{C}$-morphism $f : X \rightarrow Y$ there is a section $s: Y \rightarrow A$ and retract $r : A \rightarrow X$, along with a total map $h : \mathbf{1} \rightarrow A$ satisfying the diagram: \begin{verbatim}\begin{center} \begin{tikzcd} \arrow[r, "\bullet"] A \times A & A \arrow[r, "r"] & X \arrow[ddll, "f"] \\ \arrow[u, "\mathsf{id_A} \times h"] A \times 1 \simeq A \arrow[ur, swap, "sfr"] & & \\ Y \arrow[u, "s"] & & \end{tikzcd} \end{center}\end{verbatim} \end{defn} While restriction structure captures the function partiality one finds in [[computability theory]], the universal property stated above captures the universal coding of $\mathcal{C}$-morphisms into operations on the \emph{Turing object} $A$, via the application $\bullet$. Indeed one recovers, as an example, the category $\mathbf{Rec}$, of natural numbers $n, m \in \mathbf{N}$ and partial recursive functions $\mathbf{N}^n \rightarrow \mathbf{N}^m$. This has universal applicative structure: $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} $\backslash$arrowd, swap, dashed, ``$\backslash$exists $\backslash$hspace\{0.1cm\} $\backslash$text\{total\} $\backslash$hspace\{0.1cm\} h $\backslash$hspace\{0.1cm\} : $\backslash$hspace\{0.1cm\} 1 $\backslash$times h'' $\backslash$mathbf\{N\} $\backslash$times 1 $\backslash$simeq $\backslash$mathbf\{N\} $\backslash$arrowrd, ``f\_i'' $\backslash$ $\backslash$mathbf\{N\} $\backslash$times $\backslash$mathbf\{N\} $\backslash$arrowr, swap, ``$\backslash$langle -- $\backslash$rangle'' \& $\backslash$mathbf\{N\} $\backslash$end\{tikzcd\} $\backslash$end\{center\} and universal representation $\langle i, n \rangle = f_i(n)$ of the $i$th computable function. In this case the PCA is [[Kleene's first algebra]]. More generally, the computable map category of any PCA forms a Turing category, with Turing object the PCA and its Turing morphism being the applicative structure. And conversely, a Turing object $A$ of $\mathcal{C}$ and its Turing morphism $\bullet : A \times A \rightarrow A$ form a (relative) PCA. This is effectively a PCA-object internal to an appropriate category: \begin{defn} \label{RelativePCA}\hypertarget{RelativePCA}{} \textbf{(Relative PCA)} A (relative) PCA $A$ is a combinatory complete partial applicative system in a cartesian [[restriction category]] $\mathcal{D}$, i.e. a morphism $\bullet : A \times A \rightarrow A$ in $\mathcal{D}$ such that finite powers $A^n$ and $A$-computable morphisms form a well-defined cartesian restriction subcategory of $\mathcal{D}$. \end{defn} Note, however, that not every relative PCA in a Turing category $\mathcal{C}$ is a Turing object for $\mathcal{C}$. \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} The arithmetical representation of a (partial) function $f : \mathbf{N} \rightarrow \mathbf{N}$ as a member of the recursive enumeration of relations $\varphi_i \subset \mathbf{N} \times \mathbf{N}$ is universal, and this representation satisfies the Kleene [[recursion theorems]]: $\bullet$ (smn) Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be a partial computable function. Then there is a partial computable function $s : \mathbf{N} \rightarrow \mathbf{N}$ such that $f(\langle i, n \rangle) = f_{s(i)} (n)$. $\bullet$ (utm) There is a partial computable function $U : \mathbf{N} \rightarrow \mathbf{N}$ such that $U(\langle i, n \rangle ) = f_i (n)$. As can be nearly read off the definition above, these properties hold with respect to any Turing object. This is part of the overall motivation for Turing categories, since they provide a more model-independent setting both for stating the main theorems of recursion theory, while also allowing the ``intrinsic meaning'' of different constructions in computability theory to stand out. For example, in [[Type II computability]] (or [[function realizability]]) it turns out that \emph{function computability} with respect to the PCA $\mathbf{N}^\mathbf{N}$ (either as [[Kleene's second algebra]] or the [[Baire space of sequences]]) has the topological meaning of \emph{continuity}. Hence, despite the universal availability of Gödel-encodings of all ``$A$-computations'' for an appropriate data type $A$ into $\mathbf{N}$-computations (a form of the [[Church-Turing thesis]]), the theory of Turing categories and their applications to categorical realizability models, for example, are intended to give the intrinsic meaning of computational mathematics without resorting to such a universal representation, much like the success story of Type II computability. \hypertarget{more_examples}{}\subsection*{{More Examples}}\label{more_examples} (\ldots{}) \hypertarget{weak_limits_and_exact_completions}{}\subsection*{{Weak Limits and Exact Completions}}\label{weak_limits_and_exact_completions} (\ldots{}) \hypertarget{references}{}\subsection*{{References}}\label{references} [[!redirects turing category]] [[!redirects turing-categories]] [[!redirects Turing category]] [[!redirects turing categories]] \end{document}