\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Understanding limits in Set} [[!redirects Understanding Limits in Set]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{terminal_object}{Terminal Object}\dotfill \pageref*{terminal_object} \linebreak \noindent\hyperlink{product}{Product}\dotfill \pageref*{product} \linebreak \noindent\hyperlink{equalizer}{Equalizer}\dotfill \pageref*{equalizer} \linebreak \noindent\hyperlink{pullbacks}{Pullbacks}\dotfill \pageref*{pullbacks} \linebreak \noindent\hyperlink{fibred_products}{Fibred Products}\dotfill \pageref*{fibred_products} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} On this page, we work work through several of the key examples of \textbf{[[limits]]} in the category [[Set]]. This is part of a bigger project: [[Understanding Constructions in Categories]]. Recall that a limit, or universal cone, over a [[diagram]] $F:J\to Set$ is a [[cone]] $T$ over $J$ such that, given any cone $T'$, there is a unique [[cone function]] from $T'$ to $T$. \hypertarget{terminal_object}{}\subsection*{{Terminal Object}}\label{terminal_object} A [[terminal object]] is a universal cone over the empty diagram. In this section, we demonstrate how this leads us to the statement: Any [[singleton]] (a one-element set) is a [[terminal object]] in $Set$. To demonstrate, first note that a cone over an empty diagram is just a set and a corresponding cone function is just a function. Therefore, we are looking for a ``universal set'' $\bullet$ such that for an other set $C$, there is a unique function \begin{displaymath} f:C\to\bullet. \end{displaymath} Singletons fill the bill because for any element $c\in C$ we have the unique function defined by \begin{displaymath} f(c) = *. \end{displaymath} Therefore any singleton is a terminal object in $Set$. \hypertarget{product}{}\subsection*{{Product}}\label{product} A [[product]] is a universal cone over a discrete diagram. In this section, we demonstrate how this leads us to the statement: Any [[cartesian product]] is a [[product]] in $Set$. To demonstrate, first note that a discrete diagram $F:J\to Set$ produces a [[family of sets]] $(A_i)$ with no functions between them. A cone over the discrete diagram consists of a set $T$ and a single component \begin{displaymath} \f_i:T\to A_i \end{displaymath} for each set $A_i$. Therefore, we are looking for a universal cone $\prod_i A_i$ such that for any other cone $T$, there is a unique cone function \begin{displaymath} f:T\to\prod_i A_i. \end{displaymath} Cartesian product fills the bill because for any $t\in T$, we have the unique function defined by \begin{displaymath} f(t) = \prod_i f_i(t). \end{displaymath} This function is unique because with any other function \begin{displaymath} g:T\to\prod_i A_i \end{displaymath} with $\pi_i\circ g = f_i$, then for any element $t\in T$ \begin{displaymath} g(t) = \prod_i f_i(t) = \left(\prod_i f_i\right)(t) = f(t). \end{displaymath} Therefore $f = g$. \hypertarget{equalizer}{}\subsection*{{Equalizer}}\label{equalizer} An [[equalizer]] is the universal cone over a parallel diagram \begin{displaymath} \bullet\rightrightarrows\bullet. \end{displaymath} In this section, we demonstrate how this leads us to the statement: The [[equalizer]] of two functions is the subset on which both functions coincide. To demonstrate, first note that a parallel diagram $F:J\to Set$ produces two sets $X,Y$ with two [[parallel morphism|parallel functions]] $f,g:X\to Y$. A cone over the parallel diagram consists of a set $T$ and two components \begin{displaymath} T_X:T\to X\quad\text{and}\quad T_Y:T\to Y. \end{displaymath} This is the first example we encounter where the diagram contains morphisms so recall that with a cone we also want the the component diagrams to commute, i.e. we want \begin{displaymath} f\circ T_X = T_Y\quad\text{and}\quad g\circ T_X = T_Y. \end{displaymath} Therefore, we are looking for a universal cone $Eq$ such that for any other cone $T$, there is a unique function \begin{displaymath} f:T\to Eq. \end{displaymath} Let's first define the set \begin{displaymath} Eq = \left\{x\in X|f(x)=g(x)\right\} \end{displaymath} with two functions $Eq_X:Eq\to X$ and $Eq_Y:Eq\to Y$ defined by \begin{displaymath} Eq_X(x) = x\quad\text{and}\quad Eq_Y(x) = f(x) \end{displaymath} and verify that it is indeed a cone. The only thing we need to check is that \begin{displaymath} g\circ Eq_X = Eq_Y \end{displaymath} which amounts to showing that $f(x) = g(x)$ for all $x\in Eq$, but that is the definition of $Eq$, so we do have a cone. Now let $\phi,\psi: T\to Eq$ be two cone functions. For any element $t\in T$, we have \begin{displaymath} T_X(t) = Eq_X\circ\phi(t) = Eq_X\circ\psi(t)\implies \phi(t)=\psi(t) \end{displaymath} so that $\phi = \psi$ and the cone function is unique. Since every cone function $\phi:T\to Eq$ is unique, it follows that $Eq$ together with $Eq_X:Eq\to X$ and $Eq_Y:Eq\to Y$ is a universal cone, i.e. $Eq$ is an equalizer. \hypertarget{pullbacks}{}\subsection*{{Pullbacks}}\label{pullbacks} A [[pullback]] is a universal cone over a [[cospan]] \begin{displaymath} \itexarray{ && \bullet &&&& \bullet \\ & && \searrow & & \swarrow && \\ &&&& \bullet &&&& }. \end{displaymath} In this section, we demonstrate how this leads us to the statement: The [[pullback]] of two functions of sets is the set of pairs $(x,y)$ such that $f(x)=g(y)$. To demonstrate, first note that a cospan $F:J\to Set$ produces three sets $X,Y,Z$ with two functions $f:X\to Z$ and $g:Y\to Z$. A cone over the cospan consists of a set $T$ and three components \begin{displaymath} T_X:T\to X,\quad T_Y:T\to Y,\quad\text{and}\quad T_Z:T\to Z \end{displaymath} satisfying \begin{displaymath} f\circ T_X = T_Z\quad\text{and}\quad g\circ T_Y = T_Z, \end{displaymath} which implies, of course, \begin{displaymath} f\circ T_X = g\circ T_Y. \end{displaymath} Therefore, we are looking for a universal cone $Pb$ such that for any other cone $T$, there is a unique function \begin{displaymath} f:T\to Pb. \end{displaymath} Let's first define the set \begin{displaymath} Pb = \left\{(x,y)|f(x)=g(y)\right\} \end{displaymath} with three functions $\pi_X:Pb\to X$, $\pi_Y:Pb\to Y$, and $T_X:Pb\to Z$ defined by \begin{displaymath} \pi_X(x,y) = x,\quad\text{and}\quad \pi_Y(x,y) = y,\quad\text{and}\quad T_Z(x,y) = f(x) \end{displaymath} and verify that it is indeed a cone. The only thing we need to check is that \begin{displaymath} f\circ\pi_X = g\circ \pi_Y = T_Z \end{displaymath} which amounts to showing that $f(x) = g(y)$ for all $(x,y)\in Pb$, but that is the definition of $Pb$, so we do have a cone. Now let $\phi,\psi: T\to Eq$ be two cone functions with \begin{displaymath} \phi(t) = (\phi_X(t),\phi_Y(t)\quad\text{and}\quad\psi(t) = (\psi_X(t),\psi_Y(t) \end{displaymath} for functions \begin{displaymath} \phi_X,\psi_X:T\to X\quad\text{and}\quad\phi_Y,\psi_Y:T\to Y. \end{displaymath} For any element $t\in T$, we have \begin{displaymath} T_X(t) = \pi_X\circ\phi(t) = \pi_X\circ\psi(t)\implies \phi_X(t)=\psi_X(t). \end{displaymath} Similarly \begin{displaymath} T_Y(t) = \pi_Y\circ\phi(t) = \pi_Y\circ\psi(t)\implies \phi_Y(t)=\psi_Y(t) \end{displaymath} so that $\phi = \psi$ and the cone function is unique. Since every cone function $\phi:T\to Pb$ is unique, it follows that $Pb$ together with $\pi_X:Pb\to X$, $\pi_Y:Pb\to Y$, and $T_Z:Pb\to Z$ is a universal cone, i.e. $Pb$ is a pullback. \hypertarget{fibred_products}{}\subsection*{{Fibred Products}}\label{fibred_products} \textbf{Under Construction} [[fibred products]] \end{document}