\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Urysohn's lemma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{Proof}{Proof}\dotfill \pageref*{Proof} \linebreak \noindent\hyperlink{Implications}{Implications}\dotfill \pageref*{Implications} \linebreak \noindent\hyperlink{related_statements}{Related statements}\dotfill \pageref*{related_statements} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Urysohn's lemma} (prop. \ref{UrysohnLemma} below) states that on a [[normal topological space]] disjoint [[closed subsets]] may be separated by [[continuous functions]] in the sense that a continuous function exists which takes value 0 on one of the two subsets and value 1 on the other (called an ``Urysohn function'', def. \ref{UrysohnFunction}) below. In fact the existence of such functions is equivalent to a space being normal (remark \ref{Equivalence} below). Urysohn's lemma is a key ingredient for instance in the proof of the [[Tietze extension theorem]] and in the proof of the existence of [[partitions of unity]] on [[paracompact topological spaces]]. See the list of implications \hyperlink{Implications}{below}. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{defn} \label{UrysohnFunction}\hypertarget{UrysohnFunction}{} \textbf{(Urysohn function)} Let $X$ be a [[topological space]], and let $A,B \subset X$ be disjoint [[closed subsets]]. Then an \emph{Urysohn function} for this situation is \begin{itemize}% \item a [[continuous function]] $f \colon X \to [0,1]$ \end{itemize} to the [[closed interval]] equipped with its [[Euclidean space|Euclidean]] [[metric topology]], such that \begin{itemize}% \item it takes the value 0 on $A$ and the value 1 on $B$: \begin{displaymath} f(A) = \{0\} \phantom{AAA} \text{and} \phantom{AAA} f(B) = \{1\} \,. \end{displaymath} \end{itemize} \end{defn} \begin{prop} \label{UrysohnLemma}\hypertarget{UrysohnLemma}{} \textbf{(Urysohn's lemma)} Assuming [[excluded middle]] then: Let $X$ be a [[normal topological space|normal]] (or $T_4$) [[topological space]], and let $A,B \subset X$ be two disjoint [[closed subsets]] of $X$. Then there exists an Urysohn function (def. \ref{UrysohnFunction}). \end{prop} \begin{remark} \label{}\hypertarget{}{} Beware that the function in prop. \ref{UrysohnLemma} may take the values 0 or 1 even outside of the two subsets. The condition that the function takes value 0 or 1, respectively, \emph{precisely} on the two subsets corresponds to \emph{[[perfectly normal spaces]]}. \end{remark} \begin{remark} \label{Equivalence}\hypertarget{Equivalence}{} It is immediate that, conversely, the existence of an Urysohn function (def. \ref{UrysohnFunction}) implies that the topological space is [[normal topological space|normal]]. For let $A, B \subset X$ be disjoint closed subsets, and consider a continuous function $f \colon X \to [0,1]$ with $f(A) = \{0\}$ and $f(B) = \{1\}$ then \begin{displaymath} U_A \coloneqq f^{-1}([0,1/3) \phantom{AAA} U_B \coloneqq f^{-1}((2/3,1]) \end{displaymath} are disjoint open neighbourhoods of these subsets. Hence Urysohn's lemma shows that a topological space being normal is \emph{equivalent} to it admitting Urysohn functions. \end{remark} \hypertarget{Proof}{}\subsection*{{Proof}}\label{Proof} \begin{proof} of Urysohn's lemma, prop. \ref{UrysohnLemma} Set \begin{displaymath} C_0 \coloneqq A \phantom{AAA} U_1 \coloneqq X \backslash B \,. \end{displaymath} Since by assumption \begin{displaymath} A \cap B = \emptyset \,. \end{displaymath} we have \begin{displaymath} C_0 \subset U_1 \,. \end{displaymath} Notice that (by \href{separation+axioms#T4InTermsOfTopologicalClosures}{this lemma}) if a space is normal then every open neighbourhood $U \supset C$ of a closed subset $C$ contains a smaller neighbourhood $V$ together with its closure $Cl(V)$ \begin{displaymath} C \subset V \subset Cl(V) \subset U \,. \end{displaymath} Apply this fact successively to the above situation to obtain the following infinite sequence of nested open subsets $U_r$ and closed subsets $C_r$ \begin{displaymath} \itexarray{ C_0 && && && &\subset& && && && U_1 \\ C_0 && &\subset& && U_{1/2} &\subset& C_{1/2} && &\subset& && U_1 \\ C_0 &\subset& U_{1/4} &\subset& C_{1/4} &\subset& U_{1/2} &\subset& C_{1/2} &\subset& U_{3/4} &\subset& C_{3/4} &\subset& U_1 } \end{displaymath} and so on, labeled by the [[dyadic rational numbers]] $\mathbb{Q}_{dy} \subset \mathbb{Q}$ within $(0,1]$ \begin{displaymath} \{ U_{r} \subset X \}_{r \in (0,1] \cap \mathbb{Q}_{dy}} \end{displaymath} with the property \begin{displaymath} \underset{r_1,r_2 \in (0,1] \cap \mathbb{Q}_{dy}}{\forall} \left( \left( r_1 \lt r_2 \right) \Rightarrow \left( U_{r_1} \subset Cl(U_{r_1}) \subset U_{r_2} \right) \right) \,. \end{displaymath} Define then the function \begin{displaymath} f \;\colon\; X \longrightarrow [0,1] \end{displaymath} to assign to a point $x \in X$ the [[infimum]] of the labels of those open subsets in this sequence that contain $x$: \begin{displaymath} f(x) \coloneqq \underset{U_r \supset \{x\}}{\lim} r \end{displaymath} Here the [[limit of a net|limit]] is over the [[directed set]] of those $U_r$ that contain $x$, ordered by reverse inclusion. This function clearly has the property that $f(A) = \{0\}$ and $f(B) = \{1\}$. It only remains to see that it is continuous. To this end, first observe that \begin{displaymath} \itexarray{ (\star) && \left( x \in Cl(U_r) \right) &\Rightarrow& \left( f(x) \leq r \right) \\ (\star\star) && \left( x \in U_r \right) &\Leftarrow& \left( f(x) \lt r \right) } \,. \end{displaymath} Here it is immediate from the definition that $(x \in U_r) \Rightarrow (f(x) \leq r)$ and that $(f(x) \lt r) \Rightarrow (x \in U_r \subset Cl(U_r))$. For the remaining implication, it is sufficient to observe that \begin{displaymath} (x \in \partial U_r) \Rightarrow (f(x) = r) \,, \end{displaymath} where $\partial U_r \coloneqq Cl(U_r) \backslash U_r$ is the [[boundary]] of $U_r$. This holds because the [[dyadic numbers]] are [[dense subset|dense]] in $\mathbb{R}$. (And this would fail if we stopped the above decomposition into $U_{a/2^n}$-s at some finite $n$.) Namely, in one direction, if $x \in \partial U_r$ then for every small positive real number $\epsilon$ there exists a dyadic rational number $r'$ with $r \lt r' \lt r + \epsilon$, and by construction $U_{r'} \supset Cl(U_r)$ hence $x \in U_{r'}$. This implies that $\underset{U_r \supset \{x\}}{\lim} = r$. Now we claim that for all $\alpha \in [0,1]$ then \begin{enumerate}% \item $f^{-1}(\,(\alpha, 1]\,) = \underset{r \gt \alpha}{\cup} \left( X \backslash Cl(U_r) \right)$ \item $f^{-1}(\,[0,\alpha)\,) = \underset{r \lt \alpha}{\cup} U_r$ \end{enumerate} Thereby $f^{-1}(\,(\alpha, 1]\,)$ and $f^{-1}(\,[0,\alpha)\,)$ are exhibited as unions of open subsets, and hence they are open. Regarding the first point: \begin{displaymath} \begin{aligned} & x \in f^{-1}( \,(\alpha,1]\, ) \\ \Leftrightarrow\, & f(x) \gt \alpha \\ \Leftrightarrow\, & \underset{r \gt \alpha}{\exists} (f(x) \gt r) \\ \overset{(\star)}{\Rightarrow}\, & \underset{r \gt \alpha}{\exists} \left( x \notin Cl(U_r) \right) \\ \Leftrightarrow\, & x \in \underset{r \gt \alpha}{\cup} \left(X \backslash Cl(U_r)\right) \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} & x \in \underset{r \gt \alpha}{\cup} \left(X \backslash Cl(U_r)\right) \\ \Leftrightarrow\, & \underset{r \gt \alpha}{\exists} \left( x \notin Cl(U_r) \right) \\ \Rightarrow\, & \underset{r \gt \alpha}{\exists} \left( x \notin U_r \right) \\ \overset{(\star \star)}{\Rightarrow}\, & \underset{r \gt \alpha}{\exists} \left( f(x) \geq r \right) \\ \Leftrightarrow\, & f(x) \gt \alpha \\ \Leftrightarrow\, & x \in f^{-1}(\, (\alpha,1] \,) \end{aligned} \,. \end{displaymath} Regarding the second point: \begin{displaymath} \begin{aligned} & x \in f^{-1}(\, [0,\alpha) \,) \\ \Leftrightarrow\, & f(x) \lt \alpha \\ \Leftrightarrow\, & \underset{r \lt \alpha}{\exists}( f(x) \lt r ) \\ \overset{(\star \star)}{\Rightarrow}\, & \underset{r \lt \alpha}{\exists }( x \in U_r ) \\ \Leftrightarrow\, & x \in \underset{r \lt \alpha}{\cup} U_r \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} & x \in \underset{r \lt \alpha}{\cup} U_r \\ \Leftrightarrow\, & \underset{r \lt \alpha}{\exists }( x \in U_r ) \\ \overset{}{\Rightarrow}\, & \underset{r \lt \alpha}{\exists }( x \in Cl(U_r) ) \\ \overset{(\star)}{\Rightarrow}\, & \underset{r \lt \alpha}{\exists }( f(x) \leq r ) \\ \Leftrightarrow\, & f(x) \lt \alpha \\ \Leftrightarrow\, & x \in f^{-1}(\, [0,\alpha) \,) \end{aligned} \,. \end{displaymath} (In these derivations we repeatedly use that $(0,1] \cap \mathbb{Q}_{dy}$ is dense in $[0,1]$, and we use the [[contrapositions]] of $(\star)$ and $(\star \star)$, by [[excluded middle]].) Now since the subsets $\{ [0,\alpha), (\alpha,1]\}_{\alpha \in [0,1]}$ form a [[topological subbase|sub-base]] for the Euclidean metric topology on $[0,1]$, it follows that all pre-images of $f$ are open, hence that $f$ is continuous. \end{proof} \hypertarget{Implications}{}\subsection*{{Implications}}\label{Implications} Urysohn's lemma is key in the proof of many other theorems, for instance \begin{itemize}% \item [[Tietze extension theorem]] \item [[paracompact Hausdorff spaces equivalently admit subordinate partitions of unity]] \end{itemize} \hypertarget{related_statements}{}\subsection*{{Related statements}}\label{related_statements} \begin{itemize}% \item [[paracompact Hausdorff spaces are normal]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Due to [[Pavel Urysohn]]. \begin{itemize}% \item [[Terence Tao]], \emph{\href{https://terrytao.wordpress.com/2009/03/02/245b-notes-12-continuous-functions-on-locally-compact-hausdorff-spaces/#more-1844}{245B, Notes 12: Continuous functions on locally compact Hausdorff spaces}} \item \href{http://planetmath.org/proofofurysohnslemma}{Proof at planetmath} \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Urysohn%27s_lemma}{Urysohn's lemma}} \end{itemize} Lectures notes include \begin{itemize}% \item Tarun Chitra, section 2.1 of \emph{The Stone-Cech Compactification} 2009 \href{httP://www.math.cornell.edu/~riley/Teaching/Topology2009/essays/chitra.pdf}{pdf} \end{itemize} [[!redirects Urysohn's extension theorem]] [[!redirects Urysohn's theorem]] [[!redirects Urysohn theorem]] [[!redirects Urysohn lemma]] [[!redirects Urysohn function]] [[!redirects Urysohn functions]] \end{document}