\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{V-manifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \begin{quote}% under construction \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{VManifolds}{$V$-Manifolds}\dotfill \pageref*{VManifolds} \linebreak \noindent\hyperlink{FrameBundles}{Frame bundles}\dotfill \pageref*{FrameBundles} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the [[axiom|axiomatics]] of [[differential cohesion]] one may [[synthetic differential geometry|synthetically]] formulate a concept of \emph{[[manifolds]]} locally modeled on a [[group object]] $V$. In the [[interpretation]] in an [[differential cohesion|differentially]] [[cohesive (infinity,1)-topos]] these are [[étale infinity-groupoids]]. For exposition see at \emph{[[geometry of physics -- manifolds and orbifolds]]} and \emph{[[geometry of physics -- supergeometry]]}. \hypertarget{VManifolds}{}\subsection*{{$V$-Manifolds}}\label{VManifolds} \begin{defn} \label{LocalDiffeomorphismsInDifferentialCohesion}\hypertarget{LocalDiffeomorphismsInDifferentialCohesion}{} Given $X,Y\in \mathbf{H}$ then a morphism $f \;\colon\; X\longrightarrow Y$ is a \emph{[[local diffeomorphism]]} if its naturality square of the [[infinitesimal shape modality]] \begin{displaymath} \itexarray{ X &\longrightarrow& \Im X \\ \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{\Im f}} \\ Y &\longrightarrow& \Im Y } \end{displaymath} is a [[homotopy pullback]] square. \end{defn} Let now $V \in \mathbf{H}$ be given, equipped with the structure of a [[group]] ([[∞-group]]). \begin{defn} \label{VManifold}\hypertarget{VManifold}{} A \emph{[[V-manifold]]} is an $X \in \mathbf{H}$ such that there exists a \emph{$V$-[[atlas]]}, namely a [[correspondence]] of the form \begin{displaymath} \itexarray{ && U \\ & \swarrow && \searrow \\ V && && X } \end{displaymath} with both morphisms being [[local diffeomorphisms]], def. \ref{LocalDiffeomorphismsInDifferentialCohesion}, and the right one in addition being an [[epimorphism]], hence an [[atlas]]. \end{defn} \hypertarget{FrameBundles}{}\subsection*{{Frame bundles}}\label{FrameBundles} \begin{defn} \label{InfinitesimalDisk}\hypertarget{InfinitesimalDisk}{} For $X \in \mathbf{H}$ an object and $x \colon \ast \to X$ a point, then we say that the \emph{[[infinitesimal neighbourhood]] of}, or the \emph{[[infinitesimal disk]] at} $x$ in $X$ is the [[homotopy fiber]] $\mathbb{D}^X_x$ of the [[unit of a monad|unit]] of the [[infinitesimal shape modality]] at $x$: \begin{displaymath} \itexarray{ \mathbb{D}^X_x &\longrightarrow& X \\ \downarrow && \downarrow \\ \ast &\stackrel{x}{\longrightarrow}& \im X } \,. \end{displaymath} \end{defn} \begin{defn} \label{FormalDiskBundle}\hypertarget{FormalDiskBundle}{} For $X$ any object in differential cohesion, its \emph{infinitesimal disk bundle} $T_{inf} X \to X$ is the [[homotopy pullback]] \begin{displaymath} \itexarray{ T_{inf} X &\stackrel{ev}{\longrightarrow}& X \\ \downarrow^{\mathrlap{p}} && \downarrow \\ X &\longrightarrow& \Im X } \end{displaymath} of the [[unit of a monad|unit]] of its [[infinitesimal shape modality]] along itself. \end{defn} \begin{remark} \label{}\hypertarget{}{} By the [[pasting law]], the [[homotopy fiber]] of the infinitesimal disk bundle, def. \ref{FormalDiskBundle}, over any point $x \in X$ is the infinitesimal disk $\mathbb{D}^X_x$ in $X$ at that point, def.\ref{InfinitesimalDisk}. Nevertheless, for general $X$ the infinitesimal disk bundle need not be an [[fiber ∞-bundle]] with typical fiber (the infinitesimal disks at different points need not be equivalent, and even if they are, the bundle need not be locally trivial). Below in prop. \ref{FormalDiskBundleOfRegularManifoldsTrivializesOverCover} we see that for $X$ a $V$-manifold modeled on a group object $V$, then its infinitesimal disk bundle is indeed an [[fiber ∞-bundle]], and hence is the [[associated ∞-bundle]] to some [[principal ∞-bundle]]. That principal bundle is the [[frame bundle]] of $X$. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[Atiyah groupoid]] of $T_{inf} X$ is the [[jet groupoid]] of $X$. \end{remark} \begin{lemma} \label{EtalePullbackOfFormalDiskBundleIsFormalDiskBundle}\hypertarget{EtalePullbackOfFormalDiskBundleIsFormalDiskBundle}{} If $\iota \colon U \to X$ is a local diffeomorphism, def. \ref{LocalDiffeomorphismsInDifferentialCohesion}, then \begin{displaymath} \iota^\ast T_{inf} X \simeq T_{inf}U \,. \end{displaymath} \end{lemma} \begin{proof} By the definition of local diffeos and using the [[pasting law]] we have an equivalence of [[pasting diagrams]] of [[homotopy pullbacks]] of the following form: \begin{displaymath} \itexarray{ \iota^\ast T_{inf} X &\longrightarrow& T_{inf} &\longrightarrow& X \\ \downarrow && \downarrow && \downarrow \\ U &\longrightarrow& X &\longrightarrow& \Im X } \;\;\;\; \simeq \;\;\;\; \itexarray{ T_{inf} U &\longrightarrow& U &\longrightarrow& X \\ \downarrow && \downarrow && \downarrow \\ U &\longrightarrow& \Im U &\longrightarrow& \Im X } \end{displaymath} \end{proof} \begin{defn} \label{Framing}\hypertarget{Framing}{} For $V$ an object, a \textbf{[[framing]]} on $V$ is a trivialization of its infinitesimal disk bundle, def. \ref{FormalDiskBundle}, i.e. an object $\mathbb{D}^V$ -- the typical [[infinitesimal disk]] or [[formal disk]], def. \ref{InfinitesimalDisk}, -- and a (chosen) [[equivalence]] \begin{displaymath} \itexarray{ T_{inf} V && \stackrel{\simeq}{\longrightarrow} && V \times \mathbb{D}^n \\ & \searrow && \swarrow_{\mathrlap{p_1}} \\ && V } \,. \end{displaymath} \end{defn} \begin{defn} \label{GeneralLinearGroup}\hypertarget{GeneralLinearGroup}{} For $V$ a framed object, def. \ref{Framing}, we write \begin{displaymath} GL(V) \coloneqq \mathbf{Aut}(\mathbb{D}^V) \end{displaymath} for the [[automorphism ∞-group]] of its typical [[infinitesimal disk]]/[[formal disk]]. \end{defn} \begin{remark} \label{OrderOfInfinitesimalDisks}\hypertarget{OrderOfInfinitesimalDisks}{} When the [[infinitesimal shape modality]] exhibits first-order infinitesimals, such that $\mathbb{D}(V)$ is the first order [[infinitesimal neighbourhood]] of a point, then $\mathbf{Aut}(\mathbb{D}(V))$ indeed plays the role of the [[general linear group]]. When $\mathbb{D}^n$ is instead a higher order or even the whole [[formal neighbourhood]], then $GL(n)$ is rather a [[jet group]]. For order $k$-jets this is sometimes written $GL^k(V)$ We nevertheless stick with the notation ``$GL(V)$'' here, consistent with the fact that we have no index on the [[infinitesimal shape modality]]. More generally one may wish to keep track of a whole tower of infinitesimal shape modalities and their induced towers of concepts discussed here. \end{remark} This class of examples of framings is important: \begin{prop} \label{DifferentialCohesiveInfinityGroupIsCanonicallyFramed}\hypertarget{DifferentialCohesiveInfinityGroupIsCanonicallyFramed}{} Every differentially cohesive [[∞-group]] $G$ is canonically framed (def. \ref{Framing}) such that the horizontal map in def. \ref{FormalDiskBundle} is given by the left action of $G$ on its [[infinitesimal disk]] at the neutral element: \begin{displaymath} ev \;\colon\; T_{inf}G \simeq G \times \mathbb{D}^G_e \stackrel{\cdot}{\longrightarrow} G \,. \end{displaymath} \end{prop} \begin{proof} By the discussion at \emph{[[Mayer-Vietoris sequence]]} in the section \emph{\href{Mayer-Vietoris%20sequence#OverAGroupObject}{Over an ∞-group}} and using that the [[infinitesimal shape modality]] preserves group structure, the defining [[homotopy pullback]] of $T_{inf} G$, def. \ref{FormalDiskBundle}, is equivalent to the pasting of pullback diagrams \begin{displaymath} \itexarray{ T_{inf} G &\stackrel{}{\longrightarrow}& \mathbb{D}^G_e &\stackrel{}{\longrightarrow}& \ast \\ \downarrow && \downarrow && \downarrow \\ G \times G &\stackrel{(-)\cdot (-)^{-1}}{\longrightarrow}& G &\stackrel{}{\longrightarrow}& \Im G } \end{displaymath} where the right square is the defining pullback for the [[infinitesimal disk]] $\mathbb{D}^G$. Finally for the left square we find by \href{Mayer-Vietoris%20sequence#HTTArgumentForPullback}{this proposition} that $T_{inf} G \simeq G\times \mathbb{D}^G$ and that the top horizontal morphism is as claimed. \end{proof} By lemma \ref{EtalePullbackOfFormalDiskBundleIsFormalDiskBundle} it follows that: \begin{prop} \label{FormalDiskBundleOfRegularManifoldsTrivializesOverCover}\hypertarget{FormalDiskBundleOfRegularManifoldsTrivializesOverCover}{} For $V$ a framed object, def. \ref{Framing}, let $X$ be a $V$-manifold, def. \ref{VManifold}. Then the infinitesimal disk bundle, def. \ref{FormalDiskBundle}, of $X$ canonically trivializes over any $V$-cover $V \leftarrow U \rightarrow X$ , i.e. there is a [[homotopy pullback]] of the form \begin{displaymath} \itexarray{ U \times \mathbb{D}^V &\longrightarrow& T_{inf} X \\ \downarrow && \downarrow \\ U &\longrightarrow& X } \,. \end{displaymath} This exhibits $T_{inf} X\to X$ as a $\mathbb{D}^V$-[[fiber ∞-bundle]]. \end{prop} \begin{prop} \label{ModulatingMapOfFormalDiskBundle}\hypertarget{ModulatingMapOfFormalDiskBundle}{} By \href{fiber+infinity-bundle#Properties}{this discussion} this fiber [[fiber ∞-bundle]] is the [[associated ∞-bundle]] of an essentially uniquely determined $\mathbf{Aut}(\mathbb{D}^V)$-[[principal ∞-bundle]] $Fr(X)$, i.e. there exists a [[homotopy pullback]] diagram of the form \begin{displaymath} \itexarray{ T_{inf} X \simeq & Fr(X) \underset{\mathbf{Aut}(\mathbb{D}^V)}{\times} \mathbb{D}^V &\longrightarrow& V//\mathbf{Aut}(\mathbb{D}^V) \\ & \downarrow && \downarrow \\ & X &\stackrel{}{\longrightarrow}& \mathbf{B}\mathbf{Aut}(\mathbb{D}^V) } \,. \end{displaymath} \end{prop} \begin{defn} \label{FrameBundleMap}\hypertarget{FrameBundleMap}{} Given a $V$-manifold $X$, def. \ref{VManifold}, for framed $V$, def. \ref{Framing}, then its \emph{[[frame bundle]]} \begin{displaymath} \itexarray{ Fr(X) \\ \downarrow \\ X } \end{displaymath} is the $GL(V)$-[[principal ∞-bundle]] given by prop. \ref{FormalDiskBundleOfRegularManifoldsTrivializesOverCover} via remark \ref{ModulatingMapOfFormalDiskBundle}. \end{defn} \begin{remark} \label{}\hypertarget{}{} As in remark \ref{OrderOfInfinitesimalDisks}, this really axiomatizes in general [[higher order frame bundles]] with the order implicit in the nature of the [[infinitesimal shape modality]]. \end{remark} \begin{remark} \label{FrameBundlesFunctorial}\hypertarget{FrameBundlesFunctorial}{} By prop. \ref{EtalePullbackOfFormalDiskBundleIsFormalDiskBundle} the construction of frame bundles in def. \ref{FrameBundleMap} is functorial in [[formally étale maps]] between $V$-manifolds. \end{remark} This provides all the necessary structure to now set up an axiomatic theory of [[G-structure]] and [[higher Cartan geometry]]. This is discussed further at \emph{[[geometry of physics -- G-structure and Cartan geometry]]}. \hypertarget{references}{}\subsection*{{References}}\label{references} The concept is due to \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \item [[Igor Khavkine]], [[Urs Schreiber]], \emph{[[schreiber:Synthetic variational calculus|Synthetic geometry of differential equations Part I -- Jets and comonad structure]]} (\href{https://arxiv.org/abs/1701.06238}{arXiv:1701.06238}) \end{itemize} Formalization in [[modal type theory|modal]] [[homotopy type theory]] is in \begin{itemize}% \item [[Felix Wellen]], \emph{[[schreiber:thesis Wellen|Formalizing Cartan Geometry in Modal Homotopy Type Theory]]}, 2017 (\href{http://www.math.kit.edu/iag3/~wellen/media/diss.pdf}{pdf}) \item [[Felix Wellen]], \emph{Cartan Geometry in Modal Homotopy Type Theory} (\href{https://arxiv.org/abs/1806.05966}{arXiv:1806.05966}) \end{itemize} [[!redirects V-manifolds]] \end{document}