\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{WISC} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement_for_sets}{Statement (for Sets)}\dotfill \pageref*{statement_for_sets} \linebreak \noindent\hyperlink{relationships_to_other_axioms}{Relationships to other axioms}\dotfill \pageref*{relationships_to_other_axioms} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{local_smallness_of_anafunctor_categories}{Local smallness of anafunctor categories}\dotfill \pageref*{local_smallness_of_anafunctor_categories} \linebreak \noindent\hyperlink{existence_of_higher_inductive_types}{Existence of higher inductive types}\dotfill \pageref*{existence_of_higher_inductive_types} \linebreak \noindent\hyperlink{in_other_sites__external_version}{In other sites - external version}\dotfill \pageref*{in_other_sites__external_version} \linebreak \noindent\hyperlink{in_other_categories__internal_version}{In other categories - internal version}\dotfill \pageref*{in_other_categories__internal_version} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The assumption that every [[set]] has a \textbf{Weakly Initial Set of Covers}, or $WISC$, is a weak form of the [[axiom of choice]]. Like the [[axiom of multiple choice]] and the axiom of [[small violations of choice]] (which both imply it), it says intuitively that ``$AC$ fails to hold only in a small way'' (i.e. not in a [[proper class|proper-class]] way). \hypertarget{statement_for_sets}{}\subsection*{{Statement (for Sets)}}\label{statement_for_sets} Precisely, $WISC$ is the statement that for any [[set]] $X$, the [[full subcategory]] $(Set/X)_{surj}$ of the [[slice category]] $Set/X$ consisting of the [[surjections]] has a [[weakly initial set]]. In other words, there is a family of surjections $\{f_i\colon P_i \twoheadrightarrow X\}_{i\in I}$ such that for any surjection $Q\twoheadrightarrow X$, there exists some $f_i$ which factors through $Q$. \hypertarget{relationships_to_other_axioms}{}\subsection*{{Relationships to other axioms}}\label{relationships_to_other_axioms} \begin{itemize}% \item WISC is implied by [[COSHEP]], since any surjection $P\twoheadrightarrow X$ such that $P$ is projective is necessarily a weakly initial (singleton) set in $(Set/X)_{surj}$. \item WISC is also implied by the [[axiom of multiple choice]] (which is in turn implied by COSHEP). For if $X$ is in some collection family $\{D_c\}_{c\in C}$, then the family of all surjections of the form $D_c \twoheadrightarrow X$ is weakly initial in $(Set/X)_{surj}$. \item A [[ΠW-pretopos]] satisfying WISC is a \emph{[[predicative topos]]}. \item Since [[Michael Rathjen]] proves that [[SVC]] implies [[AMC]] (at least in [[ZF]]), SVC therefore also implies WISC. \item WISC also follows from the assertion that the [[free exact completion]] of $Set$ is [[well-powered category|well-powered]], which in turn follows from assertion that $Set$ has a [[generic proof]] (so that $Set_{ex/lex}$ is a [[topos]]). Both of these can also be regarded as saying that choice is only violated ``in a small way.'' \item WISC implies that the category of [[anafunctors]] between any two [[small categories]] is [[essentially small category|essentially small]]; see \href{/nlab/show/anafunctor#SizeQuestions}{here}, or below. \item WISC implies (in [[ZF]]) that there exist arbitrarily large [[regular cardinals]]. Therefore, WISC is not provable in ZF, as Moti Gitik constructed a model of ZF with only one regular cardinal, using large cardinal assumptions. A proof without large cardinals was given in (\hyperlink{Karagila14}{Karagila}). \end{itemize} \hypertarget{applications}{}\subsubsection*{{Applications}}\label{applications} \hypertarget{local_smallness_of_anafunctor_categories}{}\paragraph*{{Local smallness of anafunctor categories}}\label{local_smallness_of_anafunctor_categories} \begin{prop} \label{}\hypertarget{}{} WISC implies the local essential smallness of $Cat_ana$, the bicategory of categories and [[anafunctors]]. \end{prop} \begin{proof} Let $X,Y$ be small categories and consider the category $Cat_{ana}(X,Y)$, with objects which are spans \begin{displaymath} (j,f) : X \stackrel{j}{\leftarrow} X[U] \stackrel{f}{\to} Y \end{displaymath} where $X[U] \to X$ is a surjective-on-objects, [[fully faithful]] functor. The underlying map on object sets is $U \to X_0$. By WISC there is a surjection $V \to X_0$ and a map $V\to U$ over $X_0$. We can thus define a commuting triangle of functors \begin{displaymath} \itexarray{ X[V] & \to & X[U] \\ & k \searrow & \downarrow j\\ && X } \end{displaymath} where $X[V] \to X$ is the canonical fully faithful functor arising from $V\to X_0$ (the arrows of $X[V]$ are given by $V^2 \times_{X_0^2} X_1$). This gives rise to a transformation from $(j,f)$ to a span with left leg $k$. Thus $Cat_{ana}(X,Y)$ is equivalent to the [[full subcategory]] of anafunctors where the left leg has as object component an element of the weakly initial set of surjections. Since there is only a set of functors $X[V] \to Y$ for each $V\to X_0$, this subcategory is small. \end{proof} \hypertarget{existence_of_higher_inductive_types}{}\paragraph*{{Existence of higher inductive types}}\label{existence_of_higher_inductive_types} \hyperlink{Swan18}{Swan} showed that WISC implies the existence of [[W-types with reductions]], a kind of simple [[higher inductive type]]. \hypertarget{in_other_sites__external_version}{}\subsection*{{In other sites - external version}}\label{in_other_sites__external_version} Let $(C,J)$ be a [[site]] with a singleton [[Grothendieck pretopology]] $J$. It makes sense to consider a version of WISC for $(C,J)$, along the lines of the following: Let $(C/a)_{cov}$ be the full subcategory of the slice category $C/a$ consisting of the covers. WISC then states that \begin{itemize}% \item For all objects $a$ of $C$, $(C/a)_{cov}$ has a weakly initial set. \end{itemize} This definition is called \emph{external} because it refers to an external category of sets. This is to be contrasted with the \emph{internal} version of WISC, discussed below. \begin{example} \label{}\hypertarget{}{} Assuming AC for $Set$, the category $Top$ with any of its usual pretopologies satisfies 'internal WISC'. Consider, for instance, the pretopology in which the covers are the maps admitting local sections, i.e. those $p\colon Y\to X$ such that for any $x\in X$ there exist an open set $U\ni x$ such that $p^{-1}(U)\to U$ is split epic. If $Set$ satisfies AC, then a weakly initial set in $Top/_{cov}X$ is given by the set of all maps $\coprod_{U\in \mathcal{U}} U \to X$ where $\mathcal{U}\subset \mathcal{P}(X)$ is an open cover of $X$. For if $p\colon Y\to X$ admits local sections, then for each $x\in X$ we can choose an $U_x \ni x$ over which $p$ has a section, resulting in an open cover $\mathcal{U} = \{U_x \mid x\in X\}$ of $X$ for which $\coprod_{U\in \mathcal{U}} U \to X$ factors through $p$. (If $Set$ merely satisfies WISC itself, then a more involved argument is required.) \end{example} And now a non-example \begin{example} \label{}\hypertarget{}{} The category of [[affine schemes]] can be equipped with the [[fpqc topology]] (so this is the [[fpqc site]] over $Spec(\mathbb{Z})$). This does not satisfy WISC. Namely, given any set of fpqc covers of $Spec(R)$, there is a surjective fpqc map which is refined by none of the given covering families (\hyperlink{Stacks0BBK}{Stacks Project Tag 0BBK}). \end{example} More generally, for a non-singleton pretopology on $C$, we can reformulate WISC along the lines of 'there is a set of covering families weakly initial in the category of all covering families of any object'. Given a site $(C,J)$ with $J$ subcanonical, and $C$ finitely complete, we can define a (weak) 2-category $Ana(C,J)$ of internal categories, anafunctors and transformations. If WISC holds for $(C,J)$, then $Ana(C,J)$ is locally essentially small. \hypertarget{in_other_categories__internal_version}{}\subsection*{{In other categories - internal version}}\label{in_other_categories__internal_version} To consider an \emph{internal} version of WISC, which doesn't refer to an external notion of set, one needs to assume that the ambient category $C$ has a strong enough [[internal logic]], such as a pretopos (this is the context in which van den Berg and Moerdijk work). Then the ordinary statement of WISC in set can be written in the internal logic, using the [[stack semantics]], as a statement about the objects and arrows of $C$. It is in this form that WISC is useful as a replacement choice principle in intuitionistic, constructive or predicative set theory, as these are modelled on various topos-like categories (or in the case of \hyperlink{vdBM12}{van den Berg and Moerdijk}, a [[algebraic set theory|category of classes]], although this is not necessary for the approach). Importantly, the internal form of WISC is stable under many more categorical constructions than other forms of choice. For instance, any [[Grothendieck topos]] or [[realizability topos]] inherits WISC from its base topos of sets (even if the latter is constructive or even predicative); see \hyperlink{vdBerg12}{van den Berg}. This is in contrast to nearly all other choice principles, including weaker forms such as [[COSHEP]] and [[SVC]], which fail in at least some Grothendieck toposes even when the base is a model of ZFC. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Benno van den Berg]], [[Ieke Moerdijk]], \emph{The Axiom of Multiple Choice and Models for Constructive Set Theory}, \href{http://arxiv.org/abs/1204.4045}{arXiv}. In this paper WISC is called the ``axiom of multiple choice''. \item [[Thomas Streicher]], \emph{Realizability Models for $CZF + \neg Pow$}, \href{http://www.mathematik.tu-darmstadt.de/~streicher/CIZF/rmczfnp.pdf}{unpublished note}. In this note WISC is called $TTCA_f$ ($TTCA$ stands for ``type-theoretic collection axiom). \item [[Benno van den Berg]], \emph{WISC is independent from ZF}, \href{http://www.staff.science.uu.nl/~berg0002/papers/WISC.pdf}{PDF} \item [[Benno van den Berg]], \emph{Predicative toposes} (\href{http://arxiv.org/abs/1207.0959}{arXiv:1207.0959}). In this paper WISC is called the ``axiom of multiple choice''. \item [[Andrew Swan]], \emph{W-Types with Reductions and the Small Object Argument}, 2018, \href{https://arxiv.org/abs/1802.07588}{arxiv:1802.07588} \end{itemize} The following two papers give models of set theory (without large cardinals) in which WISC fails. \begin{itemize}% \item Asaf Karagila, \emph{Embedding Orders Into Cardinals With $DC_\kappa$}, Fund. Math. 226 (2014), 143-156, doi:\href{http://dx.doi.org/10.4064/fm226-2-4}{10.4064/fm226-2-4}, \href{http://arxiv.org/abs/1212.4396}{arXiv:1212.4396}. \end{itemize} \begin{itemize}% \item [[David Roberts]], \emph{The weak choice principle WISC may fail in the category of sets}, \href{http://link.springer.com/journal/11225}{Studia Logica} Volume 103 (2015) Issue 5, pp 1005-1017, doi:\href{http://dx.doi.org/10.1007/s11225-015-9603-6}{10.1007/s11225-015-9603-6} \href{http://arxiv.org/abs/1311.3074}{arXiv:1311.3074} \end{itemize} The Stacks Project shows how to construct a counterexample to WISC from any set of fpqc covers of an affine scheme. \begin{itemize}% \item [[The Stacks Project]], \href{http://stacks.math.columbia.edu/tag/0BBK}{Tag 0BBK} \end{itemize} category: foundational axiom [[!redirects WISC]] [[!redirects WISCs]] [[!redirects weakly initial set of covers]] [[!redirects weakly initial sets of covers]] [[!redirects axiom of weakly initial sets of covers]] [[!redirects SOSHWIS]] \end{document}