\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Waldhausen S-construction} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_waldhausen_categories}{For Waldhausen categories}\dotfill \pageref*{for_waldhausen_categories} \linebreak \noindent\hyperlink{related}{Related}\dotfill \pageref*{related} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{for_waldhausen_categories_2}{For Waldhausen categories}\dotfill \pageref*{for_waldhausen_categories_2} \linebreak \noindent\hyperlink{for_waldhausen_infinity1categories_and_stable_infinity1categories}{For Waldhausen (infinity,1)-categories and stable (infinity,1)-categories}\dotfill \pageref*{for_waldhausen_infinity1categories_and_stable_infinity1categories} \linebreak \noindent\hyperlink{other}{Other}\dotfill \pageref*{other} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Waldhausen $S_\bullet$-construction is a procedure that produces [[algebraic K-theory]] (as an [[infinite loop space]] or [[connective spectrum]]) from a category or [[(infinity,1)-category]] equipped with a [[Waldhausen structure]]. The construction can take as input any of the following: \begin{itemize}% \item [[Waldhausen category]] \item [[Waldhausen (infinity,1)-category]] \item [[stable (infinity,1)-category]] \item [[stable derivator]] \item \ldots{} \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_waldhausen_categories}{}\subsubsection*{{For Waldhausen categories}}\label{for_waldhausen_categories} Recall from the definition at [[K-theory]] that the K-theory spectrum $K(C)$ of the [[(∞,1)-category]] $C$ is the diagonal simplicial set on the [[bisimplicial set]] $Core(Func(\Delta^n,C))$ of sequences of morphisms in $C$ and equivalences between these (the [[core]] of the [[Segal space]] induced by $C$). The Waldhausen S-construction mimics precisely this: for $C'$ a [[Waldhausen category]] for every integer $n$ define a simplicial set $S_n C'$ to be the [[nerve]] of the category whose \begin{itemize}% \item objects are sequences $0 \hookrightarrow A_{0,1} \hookrightarrow \cdots \hookrightarrow A_{0,n}$ of Waldhausen cofibrations; \begin{itemize}% \item together with choices of quotients $A_{i j} = A_{0, j}/ A_{0,i}$, i.e. cofibration sequences $A_{0,i} \to A_{0,j} \to A_{i j}$ \end{itemize} \item morphisms are collections of morphisms $\{A_{i,j} \to B_{i,j}\}$ that commute with all diagrams in sight. \end{itemize} Then one finds that the [[nerve and realization|realization]] of the bisimplicial set $S_\bullet C'$ with respect to one variable is itself naturally a topological [[Waldhausen category]]. Therefore the above construction can be repeated to yield a sequence of topological categories $S^{(n)}_\bullet C'$. The corresponding sequence of thick [[geometric realization|topological realization]]s is a [[spectrum]] \begin{displaymath} \mathbf{K}(C)_n = |S^{(n)}_\bullet C'| \end{displaymath} this is the \textbf{S-construction} of the \textbf{Waldhausen [[K-theory]] spectrum} of $C'$. (\ldots{} roughly at least, need to polish this, see link below meanwhile\ldots{}) \hypertarget{related}{}\subsection*{{Related}}\label{related} \begin{itemize}% \item [[algebraic K-theory]] \item [[Quillen Q-construction]] \item [[K-theory of a stable (infinity,1)-category]] \item [[K-theory of a Waldhausen (infinity,1)-category]] \item [[categorified Dold-Kan correspondence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{for_waldhausen_categories_2}{}\subsubsection*{{For Waldhausen categories}}\label{for_waldhausen_categories_2} \begin{itemize}% \item [[F. Waldhausen]], \emph{Algebraic K-theory of spaces}, Alg. and Geo. Top., Springer Lect. Notes Math. 1126 (1985), 318-419, \href{http://www.maths.ed.ac.uk/~aar/surgery/rutgers/wald.pdf}{pdf}. \end{itemize} The Waldhausen S-construction is recalled for instance in section 1 of \begin{itemize}% \item [[R. W. Thomason]], Thomas Trobaugh, \emph{Higher algebraic K-theory of schemes and of derived categories}, \emph{The Grothendieck Festschrift}, 1990, 247-435. \end{itemize} or in section 1 of \begin{itemize}% \item Paul D. Mitchener, \emph{Symmetric Waldhausen K-theory spectra of topological categories} (\href{http://bib.mathematics.dk/unzip.php?filename=DMF-2001-05-001-v1.pdf.gz}{pdf}) \end{itemize} \hypertarget{for_waldhausen_infinity1categories_and_stable_infinity1categories}{}\subsubsection*{{For Waldhausen (infinity,1)-categories and stable (infinity,1)-categories}}\label{for_waldhausen_infinity1categories_and_stable_infinity1categories} \begin{itemize}% \item [[C. Barwick]], \emph{On the algebraic K-theory of higher categories}, \href{http://arxiv.org/abs/1204.3607}{arXiv:1204.3607}. \item [[Andrew J. Blumberg]], [[David Gepner]], [[Goncalo Tabuada]], \emph{A universal characterization of higher algebraic K-theory}, \href{http://arxiv.org/abs/1001.2282v4}{arXiv:1001.2282}. \end{itemize} \hypertarget{other}{}\subsubsection*{{Other}}\label{other} A combinatorial construction of symmetries due to Nadler has a relation to the S-construction in a special case: \begin{itemize}% \item [[David Nadler]], \emph{Cyclic symmetries of $A_n$-quiver representations}, \href{http://arxiv.org/abs/1306.0070}{arxiv/1306.0070} \end{itemize} \begin{quote}% This short note contains a combinatorial construction of symmetries arising in symplectic geometry (partially wrapped or infinitesimal Fukaya categories), algebraic geometry (derived categories of singularities), and K-theory (Waldhausen's S-construction). Our specific motivation (in the spirit of expectations of Kontsevich, and to be taken up in general elsewhere) is a combinatorial construction of quantizations of Lagrangian skeleta (equivalent to microlocal sheaves in their many guises). We explain here the one dimensional case of ribbon graphs where the main result of this paper gives an immediate solution. \end{quote} Interpretation in terms of a [[categorified Dold-Kan correspondence]] is discussed in \begin{itemize}% \item [[Tobias Dyckerhoff]], \emph{A categorified Dold-Kan correspondence} (\href{https://arxiv.org/abs/1710.08356}{arXiv:1710.08356}) \end{itemize} \end{document}