\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Ward identity} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{BeforeRenormalization}{Before renormalization}\dotfill \pageref*{BeforeRenormalization} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]] the \emph{quantum master Ward identity} (def. \ref{OnRegularPolynomialObservablesMasterWardIdentity} below) expresses the relation between the [[quantum field theory|quantum]] (measured by [[Planck's constant]] $\hbar$) [[interacting field theory|interacting]] (measured by the [[coupling constant]] $g$) [[equations of motion]] to the [[classical field theory|classical]] [[free field]] [[equations of motion]] at $\hbar, g\to 0$ (remark \ref{QuantumMasterEuqationRelatesQuantumInteractingELEquationsToClassicalFreeELEquations} below). As such it generalizes the [[Schwinger-Dyson equation]], to which it reduces for $g = 0$ (example \ref{QuantumMasterEuqationRelatesQuantumInteractingELEquationsToClassicalFreeELEquations} below) as well as the \emph{classical master Ward identity}, which is the case for $\hbar = 0$ (example \ref{MasterWardIdentityClassical} below). Applied to products of the [[equations of motion]] with any given [[observable]], the master Ward identity becomes a particular \emph{Ward identity}. This is of interest notably in view of [[Noether's theorem]], which says that every [[infinitesimal symmetry of the Lagrangian]] of, in particular, the given [[free field theory]], corresponds to a [[conserved current]], hence a [[horizontal differential form]] whose [[total spacetime derivative]] vanishes up to a term proportional to the [[equations of motion]]. Under [[transgression of variational differential forms|transgression]] to [[local observables]] this is a relation of the form \begin{displaymath} div \mathbf{J} = 0 \phantom{AAA} \text{on-shell} \,, \end{displaymath} where ``on shell'' means up to the ideal generated by the [[classical field theory|classical]] [[free field theory|free]] [[equations of motion]]. Hence for the case of [[local observables]] of the form $div \mathbf{J}$, the quantum Ward identity expresses the possible failure of the original [[conserved current]] to actually be conserved, due to both quantum effects ($\hbar$) and interactions ($g$). This is the form in which Ward identities are usually understood (example \ref{NoetherCurrentConservationQuantumCorrection} below). In terms of [[BV-BRST formalism]], the master Ward identity is equivalent to the \emph{[[quantum master equation]]} on [[regular polynomial observables]] (\href{quantum+master+equation#QuantumMasterEquation}{this prop.}). Neither of these equations is guaranteed to hold for any choice of [[renormalization|(``re''-)normalization]]. If a Ward identity is violated by the [[renormalization|(``re''-)normalized]] [[perturbative QFT]], specifically if there is no possible choice of [[renormalization|(``re''-)normalization]] that preserves it, the one speaks of a \emph{[[quantum anomaly]]}. Specifically if the [[conserved current]] corresponding to a [[gauge symmetry]] is \emph{anomalous} in this way, one speaks of a \emph{[[gauge anomaly]]}. \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{BeforeRenormalization}{}\subsubsection*{{Before renormalization}}\label{BeforeRenormalization} \begin{defn} \label{OnRegularPolynomialObservablesMasterWardIdentity}\hypertarget{OnRegularPolynomialObservablesMasterWardIdentity}{} Consider a [[free field theory|free]] [[gauge fixing|gauge fixed]] [[Lagrangian field theory]] $(E_{\text{BV-BRST}}, \mathbf{L}')$ (\href{A+first+idea+of+quantum+field+theory#GaugeFixingLagrangianDensity}{this def.}) with global [[BV-differential]] on [[regular polynomial observables]] \begin{displaymath} \{-S',(-)\} \;\colon\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{reg}[ [\hbar] ] \end{displaymath} (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}). Let moreover \begin{displaymath} g S_{int} \;\in\; PolyObs(E_{\text{BV-BRST}})_{reg}[ [ \hbar , g ] ] \end{displaymath} be a [[regular polynomial observable]] (regarded as an [[adiabatic switching|adiabatically switched]] non-point-[[interaction]] [[action functional]]) such that the total action $S' + g S_{int}$ satisfies the [[quantum master equation]] (\href{quantum+master+equation#QuantumMasterEquation}{this prop.}); and write \begin{displaymath} \mathcal{R}^{-1}(-) \;\coloneqq\; \mathcal{S}(g S_{int})^{-1} \star_H (\mathcal{S}(g S_{int}) \star_F (-)) \end{displaymath} for the corresponding [[quantum Møller operator]] (\href{quantum+master+equation#MollerOperatorOnRegularPolynomialObservables}{this def.}). Then by \href{quantum+master+equation#QuantumMasterEquation}{this prop.} we have \begin{equation} \{-S',(-)\} \circ \mathcal{R}^{-1} \;=\; \mathcal{R}^{-1} \left( \left\{ -(S' + g S_{int}) \,,\, (-) \right\}_{\mathcal{T}} - i \hbar \Delta_{BV} \right) \label{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered}\end{equation} This is the \emph{quantum master Ward identity} on [[regular polynomial observables]], i.e. before [[renormalization]]. \end{defn} (\hyperlink{Rejzner13}{Rejzner 13, (37)}) \begin{remark} \label{QuantumMasterEuqationRelatesQuantumInteractingELEquationsToClassicalFreeELEquations}\hypertarget{QuantumMasterEuqationRelatesQuantumInteractingELEquationsToClassicalFreeELEquations}{} \textbf{([[quantum master Ward identity]] relates [[quantum field theory|quantum]] [[interacting field theory|interacting field]] [[equation of motion|EOMs]] to [[classical field theory|classical]] [[free field]] [[equation of motion|EOMs]])} For $A \in PolyObs(E_{\text{BV-BRST}})_{reg}[ [ \hbar, g] ]$ the [[quantum master Ward identity]] on [[regular polynomial observables]] \eqref{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered} reads \begin{equation} \mathcal{R}^{-1} \left( \left\{ -(S' + g S_{int}) \,,\, A \right\}_{\mathcal{T}} - i \hbar \Delta_{BV}(A) \right) \;=\; \{-S', \mathcal{R}^{-1}(A) \} \label{RearrangedMasterQuantumWard}\end{equation} The term on the right is manifestly in the [[image]] of the global [[BV-differential]] $\{-S',-\}$ of the [[free field theory]] (\href{A+first+idea+of+quantum+field+theory#ComplexBVBRSTGlobal}{this def.}) and hence vanishes when passing to [[on-shell]] observables along the [[isomorphism]] (\href{A+first+idea+of+quantum+field+theory#eq:OnShellPolynomialObservablesAsBVCohomology}{this equation}) \begin{displaymath} \underset{ \text{on-shell} }{ \underbrace{ PolyObs(E_{\text{BV-BRST}}, \mathbf{L}') }} \;\simeq\; \underset{ \text{off-shell} }{ \underbrace{ PolyObs(E_{\text{BV-BRST}})_{def(af = 0)} }}/im(\{-S',-\}) \end{displaymath} (by \href{A+first+idea+of+quantum+field+theory#BVDifferentialGlobal}{this example}). Hence \begin{displaymath} \mathcal{R}^{-1} \left( \left\{ -(S' + g S_{int}) \,,\, A \right\}_{\mathcal{T}} - i \hbar \Delta_{BV}(A) \right) \;=\; 0 \phantom{AAA} \text{on-shell} \end{displaymath} In contrast, the left hand side is the [[interacting field observable]] (via \href{S-matrix#MollerOperatorOnRegularPolynomialObservables}{this def.}) of the sum of the [[time-ordered product|time-ordered]] [[antibracket]] with the [[action functional]] of the [[interacting field theory]] and a quantum correction given by the [[BV-operator]]. If we use the definition of the [[BV-operator]] $\Delta_{BV}$ (\href{BV-operator#RearrangedMasterWardWithOnShell}{this def.}) we may equivalently re-write this as \begin{equation} \mathcal{R}^{-1} \left( \left\{ -S' \,,\, A \right\} + \left\{ -g S_{int} \,,\, A \right\}_{\mathcal{T}} \right) \;=\; 0 \phantom{AAA} \text{on-shell} \label{RearrangedMasterWardWithOnShell}\end{equation} Hence the [[quantum master Ward identity]] expresses a relation between the ideal spanned by the [[classical field theory|classical]] [[free field theory|free field]] [[equations of motion]] and the [[quantum field theory|quantum]] [[interacting field theory|interacting field]] equations of motion. \end{remark} \begin{example} \label{SchwingerDysonReductionOfQuantumMasterWardIdentity}\hypertarget{SchwingerDysonReductionOfQuantumMasterWardIdentity}{} \textbf{([[free field]]-limit of [[master Ward identity]] is [[Schwinger-Dyson equation]])} In the [[free field]]-limit $g \to 0$ (noticing that in this limit $\mathcal{R}^{-1} = id$) the [[quantum master Ward identity]] \eqref{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered} reduces to \begin{displaymath} \left\{ -S' \,,\, A \right\}_{\mathcal{T}} - i \hbar \Delta_{BV}(A) \;=\; \{-S', A \} \end{displaymath} which is the defining equation for the [[BV-operator]] (\href{BV-operator#eq:BVOperatorDefiningRelation}{this equation}), hence is isomorphic (under $\mathcal{T}$) to the [[Schwinger-Dyson equation]] (\href{BV-operator#DysonSchwinger}{this prop.}) \end{example} \begin{example} \label{MasterWardIdentityClassical}\hypertarget{MasterWardIdentityClassical}{} \textbf{([[classical limit]] of [[quantum master Ward identity]])} In the [[classical limit]] $\hbar \to 0$ (noticing that the classical limit of $\{-,-\}_{\mathcal{T}}$ is $\{-,-\}$) the [[quantum master Ward identity]] \eqref{OnRegularObservablesQuantumMasterWardIdentityViaTimeOrdered} reduces to \begin{displaymath} \mathcal{R}^{1} \left( \left\{ -(S' + g S_{int}) \,,\, A \right\} \right) \;=\; \{-S', \mathcal{R}^{-1}(A) \} \end{displaymath} This says that the [[interacting field observable]] corresponding to the global [[antibracket]] with the action functional of the [[interacting field theory]] vanishes on-shell, classically. Applied to an observable which is [[linear map|linear]] in the [[antifields]] \begin{displaymath} A \;=\; \underset{\Sigma}{\int} A^a(x) \mathbf{\Phi}^\ddagger_a(x) \, dvol_\Sigma(x) \end{displaymath} this yields \begin{displaymath} \begin{aligned} 0 & = \{-S', \mathcal{R}^{-1}(A)\} + \mathcal{R}^{-1} \left( \left\{ -(S' + S_{int}) \,,\, A \right\}_{\mathcal{T}} \right) \\ & = \underset{\Sigma}{\int} \frac{\delta S'}{\delta \mathbf{\Phi}^a(x)} \mathcal{R}^{-1}(A^a(x)) \, dvol_\Sigma(x) + \mathcal{R}^{-1} \left( \underset{\Sigma}{\int} A^a(x) \frac{\delta (S' + S_{int})}{\delta \mathbf{\Phi}^a(x)} \, dvol_\Sigma(x) \right) \end{aligned} \end{displaymath} This is the \emph{classical master Ward identity} according to (\hyperlink{DuetschFredenhagen02}{Dütsch-Fredenhagen 02}, \hyperlink{BrennecketDuetsch07}{Brennecke-Dütsch 07, (5.5)}), following (\hyperlink{DuetschBoas02}{Dütsch-Boas 02}). \end{example} \begin{example} \label{NoetherCurrentConservationQuantumCorrection}\hypertarget{NoetherCurrentConservationQuantumCorrection}{} \textbf{(quantum correction to [[Noether's theorem|Noether current]] [[conserved current|conservation]])} Let $v \in \Gamma^{ev}_\Sigma(T_\Sigma(E_{\text{BRST}}))$ be an [[evolutionary vector field]], which is an [[infinitesimal symmetry of the Lagrangian]] $\mathbf{L}'$, and let $J_{\hat v} \in \Omega^{p,0}_\Sigma(E_{\text{BV-BRST}})$ the corresponding [[conserved current]], by [[Noether's theorem|Noether's theorem I]] (\href{A+first+idea+of+quantum+field+theory#NoethersFirstTheorem}{this prop.}), so that \begin{displaymath} \begin{aligned} d J_{\hat v} & = \iota_{\hat v} \delta \mathbf{L}' \\ & = (v^a dvol_\Sigma) \frac{\delta_{EL} L'}{\delta \phi^a} \phantom{AAA} \in \Omega^{p+1,0}_\Sigma(E_{\text{BV-BRST}}) \end{aligned} \end{displaymath} (by \href{A+first+idea+of+quantum+field+theory#eq:CurrentNoetherConservation}{this equation}), where in the second line we just rewrote the expression in components (using \href{A+first+idea+of+quantum+field+theory#eq:EulerLagrangeEquationGeneral}{this equation}) \begin{displaymath} v^a \,, \frac{\delta_{EL} L'}{\delta \phi^a} \;\in \Omega^{0,0}_\Sigma(E_{\text{BV-BRST}}) \end{displaymath} and re-arranged suggestively. Then for $a_{sw} \in C^\infty_{cp}(\Sigma)$ any choice of [[bump function]], we obtain the [[local observables]] \begin{displaymath} \begin{aligned} A_{sw} & \coloneqq \underset{\Sigma}{\int} \underset{ A^a(x) }{ \underbrace{ a_{sw}(x) v^a( \mathbf{\Phi}(x), D\mathbf{\Phi}(x), \cdots ) } } \mathbf{\Phi}^\ddagger_a(x) \, dvol_\Sigma(x) \\ & \coloneqq \tau_\Sigma( a_{sw} v^a \phi^{\ddagger}_a \, dvol_\Sigma) \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} (div \mathbf{J})_{sw} & \coloneqq \underset{\Sigma}{\int} \underset{ A^a(x) }{ \underbrace{ a_{sw}(x) v^a( \mathbf{\Phi}(x), D\mathbf{\Phi}(x), \cdots ) } } \frac{\delta S'}{\delta \mathbf{\Phi}^a(x)} \, dvol_\Sigma(x) \\ & \coloneqq \tau_\Sigma \left( a_{sw} v^a \frac{\delta_{EL} \mathbf{L}'}{\delta \phi^a} \, dvol_\Sigma \right) \end{aligned} \end{displaymath} by [[transgression of variational differential forms]]. This is such that \begin{displaymath} \left\{ -S' , A_{sw} \right\} = (div \mathbf{J})_{sw} \,. \end{displaymath} Hence applied to this choice of local observable $A$, the quantum master Ward identity \eqref{RearrangedMasterWardWithOnShell} now says that \begin{displaymath} \mathcal{R}^{-1} \left( {\, \atop \,} (div \mathbf{J})_{sw} \right) \;=\; \mathcal{R}^{-1} \left( \{g S_{int}, A_{sw} \}_{\mathcal{T}} {\, \atop \,} \right) \phantom{AAA} \text{on-shell} \end{displaymath} Hence the [[interacting field observable]]-version $\mathcal{R}^{-1}(div\mathbf{J})$ of $div \mathbf{J}$ need not vanish itself on-shell, instead there may be a correction as shown on the right. \end{example} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[chiral anomaly]] \item [[conformal blocks]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after \emph{[[John Clive Ward]]}. Discussion of the [[master Ward identity]] in the rigorous context of [[relativistic field theory|relativistic]] [[perturbative quantum field theory]] formulated via [[causal perturbation theory]]/[[perturbative AQFT]] is in \begin{itemize}% \item [[Michael Dütsch]], F.-M. Boas, \emph{The Master Ward Identity}, Rev. Math. Phys 14, (2002) 977-1049 (\href{http://cds.cern.ch/record/526377/files/0111101.pdf}{pdf}) \item [[Michael Dütsch]], [[Klaus Fredenhagen]], equation (90) in \emph{The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory}, Commun.Math.Phys. 243 (2003) 275-314 (\href{https://arxiv.org/abs/hep-th/0211242}{arXiv:hep-th/0211242}) \item Ferdinand Brennecke, [[Michael Dütsch]], equation (5.5) in \emph{Removal of violations of the Master Ward Identity}, in perturbative QFT, Rev.Math.Phys. 20 (2008) 119-172 (\href{https://arxiv.org/abs/0705.3160}{arXiv:https://arxiv.org/abs/0705.3160}) \item [[Stefan Hollands]], around (322) and (333) and (345) of \emph{Renormalized Quantum Yang-Mills Fields in Curved Spacetime}, Rev. Math. Phys.20:1033-1172, 2008 (\href{https://arxiv.org/abs/0705.3340}{arXiv:0705.3340}) \item [[Katarzyna Rejzner]], section 5.3 of \emph{Batalin-Vilkovisky formalism in locally covariant field theory} (\href{https://arxiv.org/abs/1111.5130}{arXiv:1111.5130}) \item [[Katarzyna Rejzner]], equation (37) of \emph{Remarks on local symmetry invariance in perturbative algebraic quantum field theory} (\href{https://arxiv.org/abs/1301.7037}{arXiv:1301.7037}) \item [[Michael Dütsch]], equation (4.2) of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Ward%E2%80%93Takahashi_identity}{Ward-Takahashi identity}} \end{itemize} [[!redirects Ward identities]] [[!redirects Ward–Takahashi identity]] [[!redirects Ward–Takahashi identities]] [[!redirects classical master Ward identity]] [[!redirects classical master Ward identities]] [[!redirects quantum master Ward identity]] [[!redirects quantum master Ward identities]] [[!redirects master Ward identity]] [[!redirects master Ward identities]] [[!redirects quantum Ward identity]] [[!redirects quantum Ward identities]] \end{document}