\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Weil conjecture on Tamagawa numbers} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_statement}{The statement}\dotfill \pageref*{the_statement} \linebreak \noindent\hyperlink{NumberFieldCase}{Number field case}\dotfill \pageref*{NumberFieldCase} \linebreak \noindent\hyperlink{FunctionFieldCase}{Function field case}\dotfill \pageref*{FunctionFieldCase} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{work_of_gaitsgorylurie}{Work of Gaitsgory-Lurie}\dotfill \pageref*{work_of_gaitsgorylurie} \linebreak \noindent\hyperlink{previous_work}{Previous work}\dotfill \pageref*{previous_work} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $q$ be a positive-definite [[quadratic form]] over the ring of [[integers]] $\mathbf{Z}$. The \textbf{mass} of $q$ is a weighted count of the number of quadratic forms in the [[genus]] of $q$, up to isomorphism (weighted by multiplicity). The [[Smith-Minkowski-Siegel mass formula]] gives a (complicated but computable) formula for the mass of $q$. Over [[number fields]], ideas of Tamagawa and Weil allow a reformulation of this formula as the statement that the [[Tamagawa number]] of a certain [[algebraic group]] associated to $q$ is equal to 1. \emph{Weil's conjecture} is then the statement, now a theorem of [[Robert Langlands]], K. F. Lai and Robert Kottwitz, that the [[Tamagawa number]] of any semisimple simply-connected [[algebraic group]] is equal to 1. There is [[function field analogy|analogue]] of the conjecture for [[function fields]], and it has been proved by [[Dennis Gaitsgory]] and [[Jacob Lurie]]. \hypertarget{the_statement}{}\subsection*{{The statement}}\label{the_statement} \hypertarget{NumberFieldCase}{}\subsubsection*{{Number field case}}\label{NumberFieldCase} Let $q$ be a positive-definite [[quadratic form]] over the ring of [[integers]] $\mathbf{Z}$. \begin{defn} \label{}\hypertarget{}{} The \textbf{mass} of $q$ is the sum \begin{displaymath} \sum_{q'} \frac{1}{|O_{q'}(\mathbf{Z})|} \end{displaymath} taken over the positive-definite [[quadratic forms]] $q'$ in the genus of $g$. \end{defn} Let $\mathbf{A}$ be the ring of [[adeles]], a [[locally compact]] [[commutative ring]] containing $\mathbf{Q}$ as a [[discrete]] subring. \begin{defn} \label{}\hypertarget{}{} Let $O_q(\mathbf{A})$ denote the [[automorphism group]] of $q_\mathbf{A}$, the [[base change]] of $q$ to $\mathbf{A}$. Let $SO_q(\mathbf{A}) \subset O_q(\mathbf{A})$ denote the subgroup of [[automorphisms]] with [[determinant]] 1. \end{defn} $SO_q(\mathbf{A})$ is a [[locally compact]] [[topological group]] containing $SO_q(\mathbf{Q})$ as a [[discrete]] subgroup and $SO_q(\hat{\mathbf{Z}} \times \mathbf{R})$ as a [[compact]] [[open]] subgroup. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Tamagawa-Weil reformulation of Siegel mass formula)}. Let $\mu_{\mathrm{Tam}}$ denote the [[Tamagawa measure]]. Then \begin{displaymath} \mu_{\mathrm{Tam}}(SO_q(\mathbf{Q}) \backslash SO_q(\mathbf{A})) = 2. \end{displaymath} Equivalently, \begin{displaymath} \mu_{\mathrm{Tam}}(Spin_q(\mathbf{Q})\backslash Spin_q(\mathbf{A})) = 1, \end{displaymath} where $\Spin_q$ is the 2-fold universal cover of $SO_q$. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Langlands-Lai-Kottwitz, ``[[Weil conjecture]]'')}. Let $G$ be a semisimple simply-connected [[algebraic group]] over $\mathbf{Q}$. Then \begin{displaymath} \mu_{\mathrm{Tam}}(G(\mathbf{Q})\backslash G(\mathbf{A})) = 1. \end{displaymath} \end{theorem} \hypertarget{FunctionFieldCase}{}\subsubsection*{{Function field case}}\label{FunctionFieldCase} Let $X$ be a [[smooth]] [[projective variety|projective]] [[curve]] over the [[finite field]] $F_q$, for some prime $q$. Let $K_X$ denote the [[function field]] of $X$. For $x \in X$, write $O_x$ for the [[completion]] of the [[local ring]] at $x$ and $K_x$ for its [[fraction field]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{[[ring of adeles]] of $K_X$} is defined as \begin{displaymath} \mathbf{A}_X = \product^{res}_x K_x \subset \product_x K_x, \end{displaymath} i.e. the subgroup consisting of elements $\{g_x\}_{x \in X}$ such that $g \in G(O_x)$ for all but finitely many $x$. \end{defn} $\mathbf{A}_X$ is a [[locally compact]] [[commutative ring]] with [[discrete]] subring $K_X \subset \mathbf{A}_X$. Let $G_0$ be a semisimple simply-connected linear [[algebraic group]] over $K_X$. Then $G_0(K_X) \subset G_0(\mathbf{A})$ is a [[discrete]] subgroup of the [[locally compact]] group $G_0(\mathbf{A})$. One defines a [[Tamagawa measure]] on $G(\mathbf{A})$ in a similar way as usual, i.e. by choosing a [[differential form]] and multiplying the forms on $G_0(K_x)$ ($x \in X$). Then the [[function field]] version of [[Weil's conjecture]] is \begin{theorem} \label{}\hypertarget{}{} \textbf{(Gaitsgory-Lurie, ``Weil conjecture for function fields'')}. Let $X$ be a [[smooth]] [[projective variety|projective]] [[curve]] over the [[finite field]] $F_q$, for some prime $q$. Then \begin{displaymath} \mu_{\mathrm{Tam}}(G_0(K_X)\backslash G_0(\mathbf{A}_X)) = 1. \end{displaymath} \end{theorem} This was proved by [[Dennis Gaitsgory]] and [[Jacob Lurie]]. They reformulated the conjecture as a statement about the [[cohomology]] of the [[moduli stack of G-principal bundles]] $Bun_G(X)$ on $X$, in view of the [[function field analogy]]: \begin{remark} \label{RelationToModuliStack}\hypertarget{RelationToModuliStack}{} Under the [[function field analogy]], a [[global field]] $K_X$ such as a [[function field]] or a [[number field]] is interpreted as the field of [[global sections]] of the [[rational functions]] on an [[arithmetic curve]] $X$ over a [[finite field]] $\mathbb{F}_q$ or ``over $\mathbb{F}_1$'' (the would-be [[field with one element]]), respectively. Moreover, under this [[analogy]] \begin{itemize}% \item the [[ring of adeles]] $\mathbb{A}_X$ is the ring of functions on all punctured [[formal disks]] in $X$ subject to the condition that all but at most finitely many of them extend to the un-punctured disk; \item accordingly $G(\mathbb{A}_X)$ is the group of $G$-valued such functions; \item the [[quotient]] $K_{X}\backslash \mathbb{A}_{X}$ is hence the quotient of such functions on punctured formal disks around finitely many points by the functions on $\Sigma$ with these finitely many points removed; and similarly $G(K_X)\backslash G(\mathbb{A}_X)$ is the quotient of group-valued such function; \item the ring $\mathcal{O}$ is the ring of functions on all formal disks in $\Sigma$; \item hence the further double [[quotient stack]] \begin{displaymath} Bun_G(X) = G(K_X)\backslash G(\mathbb{A}_X)//G(\mathcal{O}) \end{displaymath} is the [[groupoid]] of [[Cech cohomology|Cech cocycles]] with Cech coboundaries between them for $G$-[[principal bundles]] relative to [[covers]] of $\Sigma$ with patches being the complement of finitely many points and the formal disks around these points. \end{itemize} For more on this see at \emph{\href{http://ncatlab.org/nlab/show/moduli+space+of+bundles#OverCurvesAndTheLanglandsCorrespondence}{moduli space of bundles -- over curves}}. \end{remark} First they proved a [[Grothendieck-Lefschetz trace formula]] for $Bun_G(X)$, generalizing work of [[Kai Behrend]]: \begin{theorem} \label{}\hypertarget{}{} \textbf{(Gaitsgory-Lurie, ``Grothendieck-Lefschetz trace formula for $Bun_G(X)$'')}. Let $X$ be a [[smooth]] [[projective variety|projective]] [[curve]] over the [[finite field]] $F_q$, for some prime $q$. Then \begin{displaymath} \frac{|Bun_G(X)(\mathbf{F}_q)|}{q^{\dim(Bun_G(X))}} = \sum_{i \ge 0} (-1)^i \mathrm{Tr}(Frob^{-1} \mid H^i(\overline{Bun}_G(X) ; \mathbf{Q}_\ell) \end{displaymath} where $\overline{Bun}_G(X)$ denotes the [[base change]] of $Bun_G(X)$ to the [[algebraic closure]] of $\mathbf{F}_q$, where ${\vert -\vert}$ denotes [[groupoid cardinality]], and where $Frob : \overline{Bun}_G(X) \to \overline{Bun}_G(X)$ denotes the [[Frobenius map]]. \end{theorem} Then they proved the following result, via [[nonabelian Poincaré duality]] which provides a [[local-global principle]]. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Gaitsgory-Lurie)}. Let $X$ be a [[smooth]] [[projective variety|projective]] [[curve]] over the [[finite field]] $F_q$, for some prime $q$. Then \begin{displaymath} \sum_{i \ge 0} (-1)^i \mathrm{Tr}(Frob^{-1} \mid H^i(\overline{Bun}_G(X) ; \mathbf{Q}_\ell) = \prod_{x \in X} \frac{q^{d \cdot \deg(x)}}{|G(\kappa(x))|} \end{displaymath} \end{theorem} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Weil_conjecture_on_Tamagawa_numbers}{Weil conjecture on Tamagawa numbers}} \end{itemize} \hypertarget{work_of_gaitsgorylurie}{}\subsubsection*{{Work of Gaitsgory-Lurie}}\label{work_of_gaitsgorylurie} A proof of the [[function field]] case is discussed in \begin{itemize}% \item [[Dennis Gaitsgory]], [[Jacob Lurie]], \emph{Weil's conjecture for function fields}, \href{http://www.math.harvard.edu/~lurie/papers/tamagawa.pdf}{pdf}. \end{itemize} The proof was announced in \begin{itemize}% \item [[Jacob Lurie]], \emph{Tamagawa Numbers via Nonabelian Poincar\'e{} Duality}, talk at \href{http://people.mpim-bonn.mpg.de/teichner/Older/FRG-3.html}{FRG Chern-Simons workshop}, Jan. 15-17, 2011 \end{itemize} and is outlined in the lecture notes \begin{itemize}% \item [[Jacob Lurie]], \emph{Tamagawa Numbers via Nonabelian Poincare Duality (282y)}, lecture notes, 2014 (\href{http://www.math.harvard.edu/~lurie/282y.html}{web}) \end{itemize} See also the shorter lecture notes \begin{itemize}% \item [[Jacob Lurie]], \emph{Tamagawa numbers via nonabelian Poincare duality}, 5 lectures at \href{http://www.math.ku.dk/english/research/conferences/2014/ytm2014}{Young Topologists Meeting 2014}, notes taken by [[Aaron Mazel-Gee]], \href{http://math.berkeley.edu/~aaron/livetex/lurie-tamagawa-poincare.pdf}{pdf}. \end{itemize} \hypertarget{previous_work}{}\subsubsection*{{Previous work}}\label{previous_work} The idea of the relationship between [[Tamagawa numbers]] and [[moduli spaces]] of [[vector bundles]] goes back to [[Günter Harder]], who primarily considered the case $G = SL_n$. \begin{itemize}% \item [[Günter Harder]], \emph{Eine Bemerkung zu einer Arbeit von P. E. Newstead.}, Journal f\"u{}r die reine und angewandte Mathematik, 242 (1970): 16-25, \href{http://eudml.org/doc/151010}{eudml}. \item [[Günter Harder]], M. S. Narasimhan, \emph{On the cohomology groups of moduli spaces of vector bundles on curves}, Mathematische Annalen, 212 (1975), Issue 3, pp 215-248. \end{itemize} The [[moduli stack]] of [[principal bundles]] was studied in more generality in \begin{itemize}% \item [[Kai Behrend]], Ajneet Dhillon, \emph{On the Motive of the Stack of Bundles}, 2005, \href{http://arxiv.org/abs/math/0512640}{arXiv}. \item [[Kai Behrend]], Ajneet Dhillon, \emph{Connected components of moduli stacks of torsors via Tamagawa numbers.}, Canad. J. Math, 2009, \href{http://arxiv.org/abs/math/0503383}{arXiv}. \end{itemize} See also \begin{itemize}% \item Aravind Asok, Brent Doran, Frances Kirwan. \emph{Yang--Mills theory and Tamagawa numbers: the fascination of unexpected links in mathematics.} Bulletin of the London Mathematical Society (2008), \href{http://arxiv.org/abs/0801.4733}{arXiv}. \end{itemize} [[!redirects Weil conjecture on Tamagawa number]] \end{document}