\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Weinstein symplectic category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{refinements}{Refinements}\dotfill \pageref*{refinements} \linebreak \noindent\hyperlink{PrequantumCorrespondences}{Prequantum correspondences}\dotfill \pageref*{PrequantumCorrespondences} \linebreak \noindent\hyperlink{motivic_stabilization}{Motivic stabilization}\dotfill \pageref*{motivic_stabilization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} When [[symplectic geometry]] is used to model [[mechanics]] in [[physics]], then a [[symplectic manifold]] $(X,\omega)$ encodes the [[phase space]] of a [[mechanical system]] and a [[symplectomorphism]] \begin{displaymath} \phi \;\colon\; (X_1,\omega_1) \to (X_2, \omega_2) \end{displaymath} encodes a process undergone by this system, for instance the time evolution induced by a [[Hamiltonian vector field]]. Now the [[graph]] of a [[symplectomorphism]] $\phi$ is a [[Lagrangian submanifold]] of the [[Cartesian product]] space $X_1 \times X_2$ regarded as a [[symplectic manifold]] with symplectic form $p_1^\ast \omega_1 - p_2^\ast \omega_2$. In other words, a symplectomorphism $\phi$ as above constitutes a [[Lagrangian correspondence]] between $(X_1,\omega_1)$ and $(X_2, \omega_2)$. See for instance (\hyperlink{CattaneoMnevReshetikhin12}{Cattaneo-Mnev-Reshetikhin 12}) for a review. This suggests that instead of the [[category]] whose [[objects]] are [[symplectic manifolds]] and whose [[morphisms]] are [[symplectomorphisms]], one might consider a kind of [[category of correspondences]] whose objects are symplectic manifolds, and whose morphisms include [[Lagrangian correspondences]], so that [[composition]] is given by forming the [[fiber product]] along adjacent legs of [[correspondences]]. [[Alan Weinstein]] called this would-be category the \emph{symplectic category} and suggested that it is the natural [[domain]] for [[geometric quantization]]. However, take at face value, symplectic manifolds with [[Lagrangian correspondences]] between them do not quite form a [[category]], since the usual [[composition]] is only well-defined when the intersection of $L_1 \times L_2 \cap X_1 \times \Delta(X_2) \times X_3$ is \href{http://ncatlab.org/nlab/show/transversal+maps}{transverse}. Proposals for how to rectify this are in (\hyperlink{WehrheimWoodward}{Wehrheim-Woodward}) and in (\hyperlink{Kitchloo}{Kitchloo}) (by turning this into an [[(infinity,1)-category]]). \hypertarget{refinements}{}\subsection*{{Refinements}}\label{refinements} \hypertarget{PrequantumCorrespondences}{}\subsubsection*{{Prequantum correspondences}}\label{PrequantumCorrespondences} A refinement of the symplectic category to [[prequantum geometry]] is the following (see \hyperlink{SyntheticQFT}{S 13}). Write $\mathbf{B}U(1)_{conn}$ for the [[moduli stack]] of smooth [[circle group]]-[[principal connections]]. Write [[Smooth∞Grpd]] for the [[cohesive (∞,1)-topos]] of [[smooth ∞-groupoids]], and $Smooth\infty Grpd_{/\mathbf{B}U(1)_{conn}}$ for the corresponding [[slice (∞,1)-topos]]. Finally write \begin{displaymath} Corr_1(Smooth\infty Grpd,\mathbf{B}U(1)_{conn}) \end{displaymath} for the [[(∞,1)-category of correspondences]] in $Smooth\infty Grpd_{/\mathbf{B}U(1)_{conn}}$. An object in here is a [[prequantum geometry]] $(X,\nabla)$ given by a map \begin{displaymath} \itexarray{ X \\ \downarrow^{\mathrlap{\nabla}} \\ \mathbf{B}U(1)_{conn} } \,. \end{displaymath} Under the [[curvature]] map $F_{(-)} \colon \mathbf{B}U(1)_{conn} \to \Omega^2_{cl}$ this maps to a [[presymplectic structure]] \begin{displaymath} (X,\omega) = (X, F_{\nabla}) \,. \end{displaymath} If here $\omega$ is non-degenerate, this is a symplectic structure as in Weinstein's symplectic category. Moreover, a [[morphism]] $(X_1,\nabla_1) \to (X_2,\nabla_2)$ is a [[diagram]] of the form \begin{displaymath} \itexarray{ && Z \\ & {}^{\mathllap{i_1}}\swarrow && \searrow^{\mathrlap{i_2}} \\ X_1 && \swArrow_{\eta} && X_2 \\ & {}_{\mathllap{\nabla_1}}\searrow && \swarrow_{\mathrlap{\nabla_2}} \\ && \mathbf{B}U(1)_{conn} } \,, \end{displaymath} hence a [[correspondence]] space (smooth $\infty$-groupoid) $Z$ over $X$ and $Y$ together with an [[equivalence in an (∞,1)-category]] \begin{displaymath} \eta \colon i_2^\ast \nabla_2 \stackrel{\simeq}{\to} i_1^\ast \nabla_1 \,. \end{displaymath} On the underlying [[curvatures]] this implies that \begin{displaymath} i_2^\ast \omega_2 = i_1^\ast \omega_1 \,. \end{displaymath} Hence if $Z \to X \times Y$ is a maximal inclusion with this property, the above diagram is a prequantization of a morphism in the Weinstein symplectic category. \hypertarget{motivic_stabilization}{}\subsubsection*{{Motivic stabilization}}\label{motivic_stabilization} [[Nitu Kitchloo]] defines the [[stable (infinity,1)-category|stable]] symplectic category $\mathbb{S}$, which has as [[objects]] [[symplectic manifolds]], and [[morphisms]] are certain [[Thom spectra]] associated to [[Lagrangian correspondences]] $\overline{M} \times N$, where $\overline{M}$ denotes the conjugate with symplectic form $-\omega$. One can view this as a category of symplectic [[motives]]. Considering an oriented version of the category $\mathbb{S}$, there is a canonical [[fiber functor]] $F : M \mapsto \mathbb{S}(pt, M)$, and one may consider the [[motivic Galois group]] $G$ of monoidal [[automorphisms]] of $F$. (\hyperlink{Kitchloo}{Kitchloo 12, question 8.6, p. 19}). It turns out to have a natural subgroup which is isomorphic to the quotient of the [[Grothendieck-Teichmüller group]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Fukaya category]] \item [[Lagrangian correspondences and category-valued TFT]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The way that [[Lagrangian correspondences]] encode [[symplectomorphisms]] in [[symplectic geometry]] and hence evolution in [[mechanics]] is reviewed (and put in the broader context of [[BV-BRST formalism]]) in \begin{itemize}% \item [[Alberto Cattaneo]], [[Pavel Mnev]], [[Nicolai Reshetikhin]], \emph{Classical and quantum Lagrangian field theories with boundary} (\href{http://arxiv.org/abs/1207.0239}{arXiv:1207.0239}) \end{itemize} In his work on Fourier integral operators, \begin{itemize}% \item [[Lars Hörmander]], \emph{Fourier Integral Operators I.}, Acta Math. 127 (1971) 79--183. 14 \end{itemize} following \begin{itemize}% \item [[Victor Maslov]], \emph{Theory of Perturbations and Asymptotic Methods (in Russian)}, Moskov. Gos. Univ., Moscow, (1965). \end{itemize} observed that, under a transversality assumption, the set-theoretic composition of two [[Lagrangian submanifolds]] is again a Lagrangian submanifold, and that this composition is a ``[[classical limit]]'' of the composition of certain [[linear operators]]. Shortly thereafter, \begin{itemize}% \item J. Sniatycki, W.M. Tulczyjew, \emph{Generating forms of Lagrangian submanifolds}, Indiana Univ. Math. J. 22(1972), 267--275. \end{itemize} defined symplectic relations as [[isotropic submanifolds]] of products and showed that this class of relations was closed under ``clean'' composition. Following in part some (unpublished) ideas of [[Alan Weinstein]], \begin{itemize}% \item [[Victor Guillemin]] [[Shlomo Sternberg]], \emph{Some problems in integral geometry and some related problems in microlocal analysis}, Amer. J. Math. 101 (1979), 915--955 (\href{http://www.jstor.org/stable/2373923}{JSTOR}) \end{itemize} observed that the linear canonical relations (i.e., lagrangian subspaces of products of [[symplectic vector spaces]]) could be considered as the morphisms of a category, and they constructed a partial [[quantization]] of this category (in which lagrangian subspaces are enhanced by halfdensities.) The quantization of the linear symplectic category was part of a larger project of quantizing canonical relations (enhanced with extra structure, such as half-densities) in a functorial way, and this program was set out more formally \begin{itemize}% \item [[Alan Weinstein]], \emph{Symplectic manifolds and their lagrangian submanifolds}, Advances in Math. 6 (1971), 329--346. \item [[Alan Weinstein]], \emph{Symplectic geometry}, Bulletin Amer. Math. Soc. (new series) 5 (1981), 1--13. \end{itemize} Lecture notes reviewing these developments include \begin{itemize}% \item [[Alan Weinstein]], \emph{Symplectic Categories}, proceedings of Geometry Summer School, Lisbon, July 2009 (\href{http://arxiv.org/abs/0911.4133}{arXiv:0911.4133}) \end{itemize} from the introduction of which parts of the commented list of references above is taken. Further review includes \begin{itemize}% \item Santiago Canez, \emph{Double Groupoids, Orbifolds, and the Symplectic Category} (\href{http://arxiv.org/abs/1105.2592}{arXiv:1105.2592}) \end{itemize} Further refinements in [[higher category theory]] are discussed in \begin{itemize}% \item [[Katrin Wehrheim]] and [[Chris Woodward]], \emph{Functoriality for Lagrangian correspondences in Floer theory}, \href{http://arxiv.org/abs/0708.2851}{arXiv:0708.2851} \end{itemize} \begin{itemize}% \item [[Nitu Kitchloo]], \emph{The Stable Symplectic Category and Geometric Quantization} (\href{http://arxiv.org/abs/1204.5720v1}{arXiv:1204.5720}) \end{itemize} \begin{itemize}% \item [[Nitu Kitchloo]], [[Jack Morava]], \emph{The Grothendieck--Teichm\"u{}ller group and the stable symplectic category}, 2012. (\href{http://arxiv.org/abs/1212.6905}{arxiv:1212.6905}) \end{itemize} A closed [[symmetric monoidal category]] version of the symplectic category and the observation that this hence is a [[categorical semantics]] for [[quantum logic]] qua [[linear logic]] is in \begin{itemize}% \item [[Sergey Slavnov]], \emph{From proof-nets to bordisms: the geometric meaning of multiplicative connectives}, Mathematical Structures in Computer Science / Volume 15 / Issue 06 / December 2005, pp 1151 - 1178 \end{itemize} Remarks about refinements to correspondences of smooth $\infty$-groupoids in the slice over prequantum moduli is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Synthetic Quantum Field Theory]]}, Talk at \href{http://cms.math.ca/Events/summer13/}{CMS Summer Meeting 2013} \end{itemize} [[!redirects stable symplectic category]] [[!redirects symplectic category]] [[!redirects motivic symplectic category]] \end{document}