\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Weyl relation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_the_wick_algebra_of_free_quantum_fields}{In the Wick algebra of free quantum fields}\dotfill \pageref*{in_the_wick_algebra_of_free_quantum_fields} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What are called \emph{Weyl relations} is the incarnation of [[canonical commutation relations]] under passing to [[exponentials]]. For example if $a,a^\ast$ are two elements of an [[associative algebra]] with [[commutator]] \begin{displaymath} [a,a^\ast] = \hbar \end{displaymath} then the corresponding Weyl relation is, by the [[Baker-Campbell-Hausdorff formula]], \begin{displaymath} e^{z a}e^{z^\ast a^\ast} = e^{z^\ast a^\ast} e^{z a} e^{\hbar z z^\ast} \end{displaymath} for $z,z^\ast \in \mathbb{C}$ \hypertarget{in_the_wick_algebra_of_free_quantum_fields}{}\subsection*{{In the Wick algebra of free quantum fields}}\label{in_the_wick_algebra_of_free_quantum_fields} \begin{prop} \label{MoyalStarProductOnMicrocausal}\hypertarget{MoyalStarProductOnMicrocausal}{} \textbf{([[Hadamard distribution|Hadamard]]-[[Moyal star product]] on [[microcausal observables]] -- [[abstract Wick algebra]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] $P \Phi = 0$. Write $\Delta$ for the [[causal propagator]] and let \begin{displaymath} \Delta_H \;=\; \tfrac{i}{2}\Delta + H \end{displaymath} be a corresponding [[Wightman propagator]] ([[Hadamard 2-point function]]). Then the [[star product]] induced by $\Delta_H$ \begin{displaymath} A \star_H A \;\coloneqq\; prod \circ \exp\left( \int_{X^2} \hbar \Delta_H^{a b}(x_1, x_2) \frac{\delta}{\delta \Phi^a(x_1)} \otimes \frac{\delta}{\delta \Phi^b(x_2)} dvol_g \right) (P_1 \otimes P_2) \end{displaymath} on [[off-shell]] [[microcausal observables]] $A_1, A_2 \in \mathcal{F}_{mc}$ is well defined in that the [[wave front sets]] involved in the [[products of distributions]] that appear in expanding out the [[exponential]] satisfy [[Hörmander's criterion]]. Hence by the general properties of [[star products]] (\href{star+product#AssociativeAndUnitalStarProduct}{this prop.}) this yields a [[unital algebra|unital]] [[associative algebra]] [[structure]] on the space of [[formal power series]] in $\hbar$ of [[off-shell]] [[microcausal observables]] \begin{displaymath} \left( PolyObs(E)_{mc}[ [\hbar] ] \,,\, \star_H \right) \,. \end{displaymath} This is the \emph{[[off-shell]] [[Wick algebra]]} corresponding to the choice of [[Wightman propagator]] $H$. Moreover the image of $P$ is an ideal with respect to this algebra structure, so that it descends to the [[on-shell]] [[microcausal observables]] to yield the \emph{[[on-shell]] [[Wick algebra]]} \begin{displaymath} \left( PolyObs(E,\mathbf{L})_{mc}[ [ \hbar ] ] \,,\, \star_H \right) \,. \end{displaymath} Finally, under [[complex conjugation]] $(-)^\ast$ these are [[star algebras]] in that \begin{displaymath} \left( A_1 \star_H A_2 \right)^\ast = A_2^\ast \star_H A_1^\ast \,. \end{displaymath} \end{prop} For \textbf{proof} see at \emph{[[Wick algebra]]} \href{Wick+algebra#MoyalStarProductOnMicrocausal}{this prop.}. \begin{remark} \label{WickAlgebraIsFormalDeformationQuantization}\hypertarget{WickAlgebraIsFormalDeformationQuantization}{} \textbf{([[Wick algebra]] is [[formal deformation quantization]] of [[Poisson-Peierls bracket|Poisson-Peierls algebra of observables]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] $P \Phi = 0$ with [[causal propagator]] $\Delta$ and let $\Delta_H \;=\; \tfrac{i}{2}\Delta + H$ be a corresponding [[Wightman propagator]] ([[Hadamard 2-point function]]). Then the [[Wick algebra]] $\left( PolyObs(E,\mathbf{L})_{mc}[ [\hbar] ] \,,\, \star_H \right)$ from prop. \ref{MoyalStarProductOnMicrocausal} is a [[formal deformation quantization]] of the [[Poisson algebra]] on the [[covariant phase space]] given by the [[on-shell]] [[polynomial observables]] equipped with the [[Poisson-Peierls bracket]] $\{-,-\} \;\colon\; PolyObs(E,\mathbf{L})_{mc} \otimes PolyObs(E,\mathbf{L})_{mc} \to PolyObs(E,\mathbf{L})_{mc}$ in that for all $A_1, A_2 \in PolyObs(E,\mathbf{L})_{mc}$ we have \begin{displaymath} A_1 \star_H A_2 \;=\; A_1 \cdot A_2 \;mod\; \hbar \end{displaymath} and \begin{displaymath} A_1 \star_H A_2 - A_2 \star_H a_1 \;=\; i \hbar \{A_1, A_2\} \;mod\; \hbar^2 \,. \end{displaymath} \end{remark} (\hyperlink{Dito90}{Dito 90}, \href{Wick+algebra#DutschFredenhagen01}{Dütsch-Fredenhagen 01}) \begin{proof} By prop. \ref{MoyalStarProductOnMicrocausal} this is immediate from the general properties of the [[star product]] (\href{A+first+idea+of+quantum+field+theory+--+Quantization#MoyalStarProductIsFormalDeformationQuantization}{this example}). Explicitly, consider, without restriction of generality, $A_1 = \int (\alpha_1)_a(x) \mathbf{\Phi}^a(x)\, dvol_\Sigma(x)$ and $A_2 = \int (\alpha_2)_a(x) \mathbf{\Phi}^a(x)\, dvol_\Sigma(x)$ be two linear observables. Then \begin{displaymath} \begin{aligned} A_1 \star_H A_2 & = A_1 A_2 + \hbar \int \left( \tfrac{i}{2} \Delta^{a_1 a_2}(x_1, x_2) + H^{a_1 a_2}(x_1,x_2) \right) \frac{\partial A_1}{\partial \mathbf{\Phi}^{a_1}(x_1)} \frac{\partial A_2}{\partial \mathbf{\Phi}^{a_2}(x_2)} \;mod\; \hbar^2 \\ & = A_1 A_2 + \hbar \left( \int (\alpha_1)_{a_1}(x_1) \left( \tfrac{i}{2}\Delta^{a_1 a_2}(x_1, x_2) + H^{a_1 a_2}(x_1, x_2) \right) (\alpha_2)_{a_2}(x_2) \right) \;mod\; \hbar^2 \end{aligned} \end{displaymath} Now since $\Delta$ is skew-symmetric while $H$ is symmetric is follows that \begin{displaymath} \begin{aligned} A_1 \star_H A_2 - A_2 \star_H A_1 & = i \hbar \left( \int (\alpha_1)_{a_1}(x_1) \Delta^{a_1 a_2}(x_1, x_2) (\alpha_2)_{a_2}(x_2) \right) \;mod\; \hbar^2 \\ & = i \hbar \, \left\{ A_1, A_2\right\} \end{aligned} \,. \end{displaymath} The right hand side is the [[integral kernel]]-expression for the [[Poisson-Peierls bracket]], as shown in the second line. \end{proof} \begin{example} \label{}\hypertarget{}{} \textbf{([[Hadamard vacuum state]] [[2-point function]])} Let \begin{displaymath} A_i \in LinObs(E,\mathbf{L})_{mc} \hookrightarrow PolyObs(E,\mathbf{L})_{mc} \end{displaymath} for $i \in \{1,2\}$ be two [[linear observable|linear]] [[microcausal observables]] represented by [[distributions]] which in [[generalized function]]-notation are given by \begin{displaymath} A_i \;=\; \int (\alpha_i)_{a_i}(x_i) \mathbf{\Phi}^{a_i}(x_i) \, dvol_\Sigma(x_i) \,. \end{displaymath} Then their Hadamard-Moyal [[star product]] (prop. \ref{MoyalStarProductOnMicrocausal}) is the [[sum]] of their pointwise product with $\tfrac{1}{2} i \hbar$ times the evaluation \begin{displaymath} \begin{aligned} \langle A_1 A_2\rangle & \coloneqq \int \int (\alpha_1)_{a_1}(x_1) \, \left\langle \mathbf{\Phi}^{a_1}(x_1) \mathbf{\Phi}^{a_2}(x_2)\right\rangle \, (\alpha_2)_{a_2}(x_2) \, dvol_\Sigma(x_1) \, dvol_\Sigma(x_2) \\ & \coloneqq \tfrac{1}{2} i \hbar \int \int (\alpha_1)_{a_1}(x_1) \Delta_H^{a_1 a_2}(x_1,x_2) (\alpha_2)_{a_2}(x_2) \,dvol_\Sigma(x_1) \,dvol_\Sigma(x_2) \end{aligned} \end{displaymath} of the [[Wightman propagator]] $\Delta_H$: \begin{equation} A_1 \star_H A_2 = A_1 \cdot A_2 + \langle A_1 A_2\rangle \label{StarProductOfTwoLinearObservables}\end{equation} Further \hyperlink{HadamardVacuumStatesOnWickAlgebras}{below} we see that this evaluation is the [[2-point function]] of a [[state on a star-algebra|state]] on the [[Wick algebra]]. \end{example} \begin{example} \label{WeylRelations}\hypertarget{WeylRelations}{} \textbf{([[Weyl relations]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] and with [[Wightman propagator]] $\Delta_H$. Then for \begin{displaymath} A_1, A_2 \;\in\; LinObs(E,\mathbf{L})_{mc} \hookrightarrow PolyObs(E,\mathbf{L})_{mc} \end{displaymath} two [[linear observables|linear]] [[microcausal observables]], the Hadamard-Moyal star product (def. \ref{MoyalStarProductOnMicrocausal}) of their [[exponentials]] exhibits the [[Weyl relations]]: \begin{displaymath} e^{A_1} \star_H e^{A_2} \;=\; e^{A_1 + A_2} \; e^{\langle A_1 A_2\rangle} \end{displaymath} where on the right we have the [[exponential]] [[Wightman 2-point function]] \eqref{StarProductOfTwoLinearObservables}. \end{example} (e.g. \hyperlink{Duetsch18}{Dütsch 18, exercise 2.3}) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Dütsch]], exercise 2.3 in \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} [[!redirects Weyl relations]] \end{document}