\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Whitehead product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{lie_theory}{}\paragraph*{{Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{basic_definition}{Basic definition}\dotfill \pageref*{basic_definition} \linebreak \noindent\hyperlink{generalized_version}{Generalized version}\dotfill \pageref*{generalized_version} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{super_lie_algebra_structure}{Super Lie algebra structure}\dotfill \pageref*{super_lie_algebra_structure} \linebreak \noindent\hyperlink{OfAnElementWithItself}{Of elements with themselves}\dotfill \pageref*{OfAnElementWithItself} \linebreak \noindent\hyperlink{as_primary_homotopy_operations}{As primary homotopy operations}\dotfill \pageref*{as_primary_homotopy_operations} \linebreak \noindent\hyperlink{in_terms_of_samelson_products}{In terms of Samelson products}\dotfill \pageref*{in_terms_of_samelson_products} \linebreak \noindent\hyperlink{RelationToSullivanModels}{Relation to the Sullivan models}\dotfill \pageref*{RelationToSullivanModels} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesInRationalHomotopyTheory}{In rational homotopy theory}\dotfill \pageref*{ReferencesInRationalHomotopyTheory} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{basic_definition}{}\subsubsection*{{Basic definition}}\label{basic_definition} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[pointed space|pointed]] [[topological space]] ([[CW-complex]]), the \emph{Whitehead products} (\hyperlink{Whitehead41}{Whitehead 41, Section 3}) are the [[bilinear maps]] on the elements of the [[homotopy groups]] $\pi_\bullet(X)$ of $X$ of the form \begin{equation} [-,-]_{Wh} \;\colon\; \pi_{n_1}\big( X \big) \otimes_{\mathbb{Z}} \pi_{n_2}\big( X \big) \longrightarrow \pi_{n_1 + n_2 - 1}\big( X \big) \phantom{AA} \text{for all} \; n_i \in \mathbb{N} ; \; n_i \geq 1 \,, \label{WhiteheadProductMapInSingleDegrees}\end{equation} given by sending any [[pair]] of [[homotopy classes]] \begin{displaymath} \big[ S^{n_i} \overset{\phi_i}{\longrightarrow} X \big] \;\in\; \pi_{ n_i } \big( X \big) \end{displaymath} to the [[homotopy class]] of the top [[composition|composite]] in the [[diagram]] \begin{displaymath} \itexarray{ S^{ n_1 + n_2 -1 } & \overset{ f_{n_1,n_2} }{ \longrightarrow } & S^{n_1} \vee S^{n_2} & \overset{ (\phi_1, \phi_2) }{\longrightarrow} & X \\ \big\downarrow & (po) & \big\downarrow \\ D^{ n_1 + n_2 } &\underset{}{\longrightarrow}& S^{n_1} \times S^{n_2} } \end{displaymath} where $f_{n_1, n_2}$ is [[generalized the|the]] [[attaching map]] exhibiting the [[product space]] $S^{n_1} \times S^{n_2}$ as the result of a [[cell attachment]] to the [[wedge sum]] $S^{n_1} \vee S^{n_2}$. \end{defn} In this form this appears for instance in \hyperlink{FelixHalperinThomas00}{Félix-Halperin-Thomas, p. 176 with p. 177}. \hypertarget{generalized_version}{}\subsubsection*{{Generalized version}}\label{generalized_version} There is also a \textbf{generalized Whitehead product} where we can take more general homotopy classes ([[continuous maps]] up to [[homotopy]]) $\alpha\in [S^\cdot Y,X]$ and $\beta\in [S^\cdot Z,X]$ to produce a class $[\alpha,\beta]_{Wh}\in[Y\star Z,X]$. Here $S^\cdot$ denotes the [[reduced suspension]] operation on pointed spaces and $\star$ denotes the [[join of spaces|join]] of CW-complexes. Notice that $pt\star Z = C^\cdot(Z)$ and the reduced [[cone]] of a point is $C^\cdot(pt)=S^1$. Thus for $Y=Z=pt$ the generalized Whitehead product reduced to the usual Whitehead product. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{super_lie_algebra_structure}{}\subsubsection*{{Super Lie algebra structure}}\label{super_lie_algebra_structure} If one assigns degree $n-1$ to the $n$th [[homotopy group]] $\pi_n$, then the degree-wise Whitehead products \eqref{WhiteheadProductMapInSingleDegrees} organize into a single degree-0 bilinear pairing on the [[graded abelian group]] which is the [[direct sum]] of all the [[homotopy groups]]: \begin{equation} \itexarray{ \pi_{\bullet + 1}(X) = & \pi_1(X) &\oplus& \pi_2(X) &\oplus& \pi_3(X) &\oplus& \cdots \\ deg = & 0 && 1 && 2 } \label{DegreeShiftedHomotopyGroups}\end{equation} This unified Whitehead product is \emph{graded} skew-symmetric in that for $\phi_i \in \pi_{n_i}\big( X \big)$ it satisfies \begin{displaymath} \big[ \phi_1, \, \phi_2 \big]_{Wh} \;=\; - (-1)^{ (n_1 - 1)(n_2-1) } \big[ \phi_1, \, \phi_2 \big]_{Wh} \end{displaymath} and it satisfies the corresponding graded [[Jacobi identity]] (\hyperlink{Hilton55}{Hilton 55, Theorem B}). This makes the Whitehead bracket the [[Lie bracket]] of a [[super Lie algebra]] [[structure]] on $\pi_{\bullet-1}(X)$ \eqref{DegreeShiftedHomotopyGroups}, over the [[ring]] of [[integers]] (sometimes called, in this context, a \emph{graded quasi-Lie algebra}, see \hyperlink{OfAnElementWithItself}{below}). \hypertarget{OfAnElementWithItself}{}\subsubsection*{{Of elements with themselves}}\label{OfAnElementWithItself} Beware that the skew-symmetry of [[Lie algebras]] over the [[integers]], as opposed to over a [[field]] of [[characteristic zero]], implies for any element $\phi$ of [[even number|even]] homogeneous degree -- hence here for elements of [[homotopy groups]] in [[odd number|odd]] degree -- only that the bracket with itself vanishes after multiplication by 2 \begin{displaymath} [\phi,\phi]_{Wh} = - [\phi,\phi]_{Wh} \phantom{AA} \text{hence equivalently} \phantom{AA} 2 \cdot [\phi,\phi]_{Wh} = 0 \end{displaymath} but not necessarily that $[\phi,\phi]_{Wh} = 0$ by itself -- since [[multiplication]] by 2 is not an [[isomorphism]] over the [[integers]]. But this means that the Whitehead bracket of any even-degree [[element]] with itself -- hence of any [[element]] of a [[homotopy group]] in [[odd number|odd]] degree -- has [[order of a group element|order]] at most 2, hence is in the 2-[[torsion subgroup]] of the respective [[homotopy group]]. \hypertarget{as_primary_homotopy_operations}{}\subsubsection*{{As primary homotopy operations}}\label{as_primary_homotopy_operations} The Whitehead products form one of the [[primary homotopy operations]]. In fact, together with [[composition operations]] and [[fundamental group]]-[[actions]] they [[generators and relations|generate]] all such operations. This is related to the definition of [[Pi-algebras]]. \hypertarget{in_terms_of_samelson_products}{}\subsubsection*{{In terms of Samelson products}}\label{in_terms_of_samelson_products} In the context of [[simplicial groups]], representing [[connected]] [[homotopy types]], there is a formula for the Whitehead product in terms of a [[Samelson product]], which in turn is derived from a [[shuffle]] product which is a sort of non-commutative version of the [[Eilenberg-Zilber map]]. These simplicial formulae come from an analysis of the structure of the [[product of simplices]]. (This formula for the Whitehead product is due to [[Dan Kan]] and can be found in the old survey article of [[Ed Curtis]]. The proof that it works was never published.) \hypertarget{RelationToSullivanModels}{}\subsubsection*{{Relation to the Sullivan models}}\label{RelationToSullivanModels} We discuss (Prop. \ref{CoBinarySullivanDifferentialIsWhiteheadProduct} below) how the [[rationalization]] of the [[Whitehead product]] is the co-binary part of the [[Sullivan model|Sullivan differential]] in [[rational homotopy theory]]. First we make explicit some notation and normalization conventions that enter this statement: In the following, for $W$ a $\mathbb{Z}$-[[graded module]], we write \begin{displaymath} W \wedge W \;\coloneqq\; Sym^2(W) \;\coloneqq\; \big( W \otimes W \big) / \big( \alpha \otimes \beta \sim (-1)^{ n_\alpha n_\beta } \beta \otimes \alpha \big) \,, \end{displaymath} where on the right $\alpha, \beta \in W$ are elements of homogeneous degree $n_\alpha, n_\beta \in \mathbb{Z}$, respectively. The point is just to highlight that ``$(-)\wedge(-)$'' is not to imply here a degree shift of the generators (as it typically does in the usual notation for [[Grassmann algebras]]). Let $X$ be a [[simply connected topological space]] with [[Sullivan model]] \begin{equation} CE( \mathfrak{l} X ) \;=\; \big( Sym^\bullet\big(V^\ast\big), d_X \big) \label{SullivanModelX}\end{equation} for $V^\ast$ the [[graded vector space]] of generators, which is the $\mathbb{Q}$-linear [[dual space|dual]] [[graded vector space]] of the [[graded object|graded]] $\mathbb{Z}$-[[module]] (=[[graded abelian group]]) of [[homotopy groups]] of $X$: \begin{displaymath} V^\ast \;\coloneqq\; Hom_{Ab}\big( \pi_\bullet(X), \mathbb{Q} \big) \,. \end{displaymath} Declare the [[wedge product]] pairing to be given by \begin{equation} \itexarray{ V^\ast \wedge V^\ast &\overset{\Phi}{\longrightarrow}& Hom_{Ab} \big( \pi_\bullet(X) \wedge \pi_\bullet(X) , \mathbb{Q} \big) \\ (\alpha, \beta) &\mapsto& \Big( v \wedge w \;\mapsto\; (-1)^{ n_\alpha \cdot n_\beta } \alpha(v)\cdot \beta(w) + \beta(v)\cdot \alpha(w) \Big) } \label{WedgeProductNormalization}\end{equation} where $\alpha$, $\beta$ are assumed to be of homogeneous degree $n_\alpha, n_\beta \in \mathbb{N}$, respectively. (Notice that the usual normalization factor of $1/2$ is \emph{not} included on the right. This normalization follows \hyperlink{AndrewsArkowitz78}{Andrews-Arkowitz 78, above Thm. 6.1}.) Finally, write \begin{equation} [-]_2 \;\colon\; Sym^\bullet\big(V^\ast\big) \longrightarrow V^\ast \wedge V^\ast \label{PojectionToBinary}\end{equation} for the linear projection on quadratic polynomials in the graded [[symmetric algebra]]. Then: \begin{prop} \label{CoBinarySullivanDifferentialIsWhiteheadProduct}\hypertarget{CoBinarySullivanDifferentialIsWhiteheadProduct}{} \textbf{([[co-binary Sullivan differential is Whitehead product]])} Let $X$ be a [[simply connected topological space]] of rational [[finite type]], so that it has a [[Sullivan model]] with Sullivan differential $d_X$ \eqref{SullivanModelX}. Then the co-binary component \eqref{PojectionToBinary} of the Sullivan differential equals the $\mathbb{Q}$-[[linear dual map]] of the [[Whitehead product]] $[-,-]_X$ on the [[homotopy groups]] of $X$: \begin{displaymath} [d_X \alpha]_2 \;=\; [-,-]_X^\ast \,. \end{displaymath} More explicitly, the following [[commuting diagram|diagram commutes]]: \begin{displaymath} \itexarray{ V^\ast &\overset{ [-]_2\circ d_X }{\longrightarrow}& V^\ast \wedge V^\ast \\ \big\downarrow^{ \mathrlap{=} } && \big\downarrow^{ \mathrlap{\Phi} } \\ Hom_{Ab} \big( \pi_\bullet(X), \mathbb{Q} \big) & \underset{ Hom_{Ab}\big( [-,-]_X , \; \mathbb{Q} \big) }{ \longrightarrow } & Hom_{Ab} \big( \pi_\bullet(X) \wedge \pi_\bullet(X), \; \mathbb{Q} \big) } \,, \end{displaymath} where the wedge product on the right is normalized as in \eqref{WedgeProductNormalization}. \end{prop} (\hyperlink{AndrewsArkowitz78}{Andrews-Arkowitz 78, Thm. 6.1}, following \hyperlink{DeligneGriffithsMorganSullivan75}{Deligne-Griffiths-Morgan-Sullivan 75}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{WhiteheadProductCorrespondingToComplexHopfFibration}\hypertarget{WhiteheadProductCorrespondingToComplexHopfFibration}{} \textbf{([[Whitehead product]] corresponding to [[complex Hopf fibration]])} For $X = S^2$ the [[2-sphere]], consider the following two [[elements]] of its [[homotopy groups]] ([[homotopy groups of spheres|of spheres]], as it were): \begin{enumerate}% \item $id_{S^2} \in \pi_2\big( S^2 \big)$ (represented by the [[identity function]] $S^2 \to S^2$) \item $h_{\mathbb{C}} \in \pi_3\big( S^2 \big)$ (represented by the [[complex Hopf fibration]]) \end{enumerate} Then the Whitehead product satisfies \begin{displaymath} \big[ id_{S^2}, \; id_{S^2} \big] \;=\; 2 \cdot h_{\mathbb{C}} \,. \end{displaymath} \end{example} $\backslash$linebreak \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The concept is originally due to \begin{itemize}% \item [[J. H. C. Whitehead]], Section 3 of \emph{On Adding Relations to Homotopy Groups}, Annals of Mathematics Second Series, Vol. 42, No. 2 (Apr., 1941), pp. 409-428 (\href{https://www.jstor.org/stable/1968907}{jstor:1968907}) \end{itemize} with early discussion in \begin{itemize}% \item [[Peter Hilton]], [[J. H. C. Whitehead]], \emph{Note on the Whitehead Product}, Annals of Mathematics Second Series, Vol. 58, No. 3 (Nov., 1953), pp. 429-442 (\href{https://www.jstor.org/stable/1969746}{jstor:1969746}) \item [[Peter Hilton]], \emph{On the homotopy groups of unions of spheres}, J. London Math. Soc., 1955, 30, 154–172 ([[Hilton55.pdf:file]]) \end{itemize} See also \begin{itemize}% \item Wikipedia \emph{\href{http://en.wikipedia.org/wiki/Whitehead_product}{Whitehead product}} \end{itemize} Discussion of Whitehead products specifically of [[homotopy groups of spheres]]: \begin{itemize}% \item [[Ioan Mackenzie James]], \emph{On the Suspension Triad}, Annals of Mathematics Second Series, Vol. 63, No. 2 (Mar., 1956), pp. 191-247 (\href{https://www.jstor.org/stable/1969607}{arXiv:1969607}) \item [[Ioan Mackenzie James]], \emph{On the Suspension Sequence}, Annals of Mathematics Second Series, Vol. 65, No. 1 (Jan., 1957), pp. 74-107 (\href{https://www.jstor.org/stable/1969666}{arXiv:1969666}) \end{itemize} Discussion of Whitehead products in [[homotopy type theory]]: \begin{itemize}% \item [[Guillaume Brunerie]], section 3.3 of \emph{On the homotopy groups of spheres in homotopy type theory} (\href{https://arxiv.org/abs/1606.05916}{arXiv:1606.05916}) \end{itemize} \hypertarget{ReferencesInRationalHomotopyTheory}{}\subsubsection*{{In rational homotopy theory}}\label{ReferencesInRationalHomotopyTheory} Discussion of Whitehead products in [[rational homotopy theory]] ([[the co-binary Sullivan differential is the dual Whitehead product]]): \begin{itemize}% \item [[Daniel Quillen]], section I.5 of \emph{Rational Homotopy Theory}, Annals of Mathematics Second Series, Vol. 90, No. 2 (Sep., 1969), pp. 205-295 (\href{https://www.jstor.org/stable/1970725}{jstor:1970725}) \item Christopher Allday, \emph{Rational Whitehead products and a spectral sequence of Quillen}, Pacific J. Math. Volume 46, Number 2 (1973), 313-323 (\href{https://projecteuclid.org/euclid.pjm/1102946308}{euclid:1102946308}) \item Christopher Allday, \emph{Rational Whitehead product and a spectral sequence of Quillen, II}, Houston Journal of Mathematics, Volume 3, No. 3, 1977 (\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.8821&rep=rep1&type=pdf}{pdf}) \item [[Pierre Deligne]], [[Phillip Griffiths]], [[John Morgan]], [[Dennis Sullivan]], \emph{Real homotopy theory of Kähler manifolds}, Invent Math (1975) 29: 245 (\href{https://doi.org/10.1007/BF01389853}{doi:10.1007/BF01389853}) \item Peter Andrews, [[Martin Arkowitz]], \emph{Sullivan's Minimal Models and Higher Order Whitehead Products}, Canadian Journal of Mathematics, 30(5), 961-982, 1978 (\href{https://doi.org/10.4153/CJM-1978-083-6}{doi:10.4153/CJM-1978-083-6}) \item [[Yves Félix]], [[Steve Halperin]], J.C. Thomas, Prop. 13.16 in \emph{Rational Homotopy Theory}, Graduate Texts in Mathematics, 205, Springer-Verlag, 2000. \item Francisco Belchí, [[Urtzi Buijs]], José M. Moreno-Fernández, Aniceto Murillo, \emph{Higher order Whitehead products and $L_\infty$ structures on the homology of a DGL}, Linear Algebra and its Applications, Volume 520 (2017), pages 16-31 (\href{https://arxiv.org/abs/1604.01478}{arXiv:1604.01478}) \item Takahito Naito, \emph{A model for the Whitehead product in rational mapping spaces} (\href{https://arxiv.org/abs/1106.4080}{arXiv:1106.4080}) \end{itemize} [[!redirects Whitehead products]] \end{document}