\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Whitehead tower} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{whiteheads_construction}{Whitehead's construction}\dotfill \pageref*{whiteheads_construction} \linebreak \noindent\hyperlink{functorial_constructions}{Functorial constructions}\dotfill \pageref*{functorial_constructions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{OfTheOrthogonalGroup}{Whitehead tower of the orthogonal group}\dotfill \pageref*{OfTheOrthogonalGroup} \linebreak \noindent\hyperlink{whitehead_tower_in_general_toposes}{Whitehead tower in general $(\infty,1)$-toposes}\dotfill \pageref*{whitehead_tower_in_general_toposes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Whitehead tower} of a [[pointed object|pointed]] [[homotopy type]] $X$ is an interpolation of the point inclusion $* \to X$ by a sequence of homotopy types \begin{displaymath} * \to \cdots \to X^{(2)} \to X^{(1)} \to X^{(0)} \simeq X \end{displaymath} that are obtained from right to left by \emph{removing [[homotopy groups]] from below}, hence such that \begin{itemize}% \item each $X^{(n)}$ is $(n-1)$-[[n-simply connected space|connected]] \item and each [[morphism]] $X^{(n+1)} \to X^{(n)}$ induces an [[isomorphism]] on all [[homotopy groups]] in degree $k \geq (n+1)$ (and the inclusion $1 \to \pi_n(X^{(n)})$ in degree $n$ as well as the identity $1 = 1$ in degree $k \lt n$). \end{itemize} The notion of Whitehead tower is [[duality|dual]] to the notion of \emph{[[Postnikov tower]]}, which instead is a factorization of the terminal morphism $X \to *$ into a tower, where homotopy groups are \emph{added} from right to left. In fact, the Whitehead tower may be constructed by taking each stage $X^{(n+1)} \to X$ to be the \emph{[[homotopy fiber]]} of the corresponding map into the $(n+1)$st stage of the [[Postnikov tower]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The construction of Whitehead towers is traditionally done for [[topological spaces]] regarded up to [[weak homotopy equivalence]], hence as objects of the [[(∞,1)-category]] [[Top]]. The discussion directly generalizes to any [[(∞,1)-topos]]. The \textbf{Whitehead tower} of a [[homotopy type]] $X$ is a sequence of [[homotopy types]] \begin{displaymath} * \to \cdots \to X^{(2)} \to X^{(1)} \to X^{(0)} \simeq X \end{displaymath} where [[generalized the|the]] space $X^{(n)}$ is [[generalized the|the]] [[homotopy fiber]] of [[generalized the|the]] map $X \to X_{(n+1)}$ into the item $X_{(n+1)}$ in the [[Postnikov tower]] of $X$. Here each [[homotopy pullback]] \begin{displaymath} \itexarray{ X^{(n)} &\to& * \\ \downarrow && \downarrow \\ X &\to& X_{(n+1)} } \end{displaymath} in the [[(∞,1)-category]] [[Top]] may be computed (as described at [[homotopy pullback]]) as an ordinary [[pullback]] in the 1-[[category]] [[Top]] of a fibrantly replaced diagram, for instance with the point $*$ replaced by the path fibration $P X_{(n+1)} \simeq *$, which is a [[Hurewicz fibration]] $P X_{(n+1)} \to X_{(n+1)}$. In this case also the ordinary [[pullback]] $X^{(n)}\to X$ \begin{displaymath} \itexarray{ X^{(n)} &\to& P X_{(n+1)} \\ \downarrow && \downarrow \\ X &\to& X_{(n+1)} } \end{displaymath} is a fibration, and this is often taken as part of the definition of the Whitehead tower. From this perspective the \emph{Whitehead tower} of a [[pointed space]] $(X,x)$ is a sequence of fibrations \begin{displaymath} \ldots \to X\langle n\rangle \to \ldots \to X\langle 1 \rangle \to X\langle 0 \rangle \to X \end{displaymath} where each $X\langle n\rangle \to X\langle n-1 \rangle$ induces isomorphisms on [[homotopy group]]s $\pi_i$ for $i\gt n$ and such that $X\langle n\rangle$ is $n$-[[n-connected|connected]] (has trivial [[homotopy group]]s $\pi_i$ for $i \leq n$). The homotopy long exact sequence then shows that the fiber of $X\langle n\rangle \to X\langle n-1 \rangle$ is a $K(\pi_{n-1}(X,x),n-1)$ [[Eilenberg-Mac Lane space]]. One has a model for $K(\pi_{n-1}(X,x),n-1)$ which is an abelian topological group; this has a remarkable consequence when $(X,x)=(G,e)$ is a [[topological group]]. Indeed, in this case one sees inductively that $G\langle n\rangle$ has a model which is a topological group, which is an abelian group extension: \begin{displaymath} 1\to K(\pi_{n-1}(X,x),n-1) \to G\langle n\rangle \to G\langle n-1 \rangle \to 1 \end{displaymath} For instance, the [[string group]] can be realized as a topological group as a $K(\mathbb{Z},2)$-extension of the [[spin group]]. For $n=0$ we require that $X\langle 0 \rangle \hookrightarrow X$ is the inclusion of the path-component of $x$. Really this is defined up to [[homotopy (as an operation)|homotopy]], but we have a canonical model. If $X$ is locally connected and semilocally path-connected, then $X\langle 1\rangle$ can be chosen as the [[universal covering space]]. In traditional models this construction is highly non-[[functor]]ial, except for nice spaces in low dimensions as remarked above. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} \hypertarget{whiteheads_construction}{}\subsubsection*{{Whitehead's construction}}\label{whiteheads_construction} \hyperlink{Whitehead}{Whitehead 1952} answered the question, posed by [[Witold Hurewicz]], of the existence of what we would now call $n$-connected 'covers' of a given space $X$, taking this to mean a fibration $X\langle n\rangle \to X$ with $X\langle n\rangle$ $n$-connected and otherwise inducing isomorphisms on homotopy groups. The construction proceeds as follows (using modern terminology). Given a pointed space $(X,x)$, \begin{itemize}% \item Choose a representative for the [[Postnikov section]] $X_n$ such that $X \hookrightarrow X_n$ is a closed subspace (I would be tempted to make it a closed cofibration, but I don't know any reason for this to be necessary -DMR). \item Form the $\infty$-connected cover of $X_n$, i.e. the [[path fibration]] $P X_n$. This is a [[Hurewicz fibration]]. \item Pull this back to $X$, to get $p\colon X\langle n\rangle \to X$, which is still a fibration. The induced maps on long exact sequences in homotopy can be compared, and show that $p$ has the desired properties. \end{itemize} This gives us a single $n$-connected cover, but by considering the [[Postnikov tower]] \begin{displaymath} X \to (\ldots \to X_n \to X_{n-1} \to \ldots \to X_1 \to X_0) \end{displaymath} of $X$, where each map $X \to X_n$ is the inclusion of a closed subspace, it is simple to see there are induced maps $X\langle n\rangle \to X\langle n-1\rangle$ over $X$ for all $n$. One way of obtaining a Postnikov section as above is to choose representatives $\phi_g\colon S^{n+1} \to X$ of generators $g$ of $\pi_{n+1}(X,x)$ and attaching cells: $X(1)\coloneqq B^{n+2} \cup_{\{\phi_g\}} X$. We then choose representatives for the generators of $\pi_{n+2}(X(1),x)$ and attach cells and so on. The colimit $\lim_{\to n} X(n)$ is then a Postnikov section with the properties we require. Understandably, this process is unbelievably non-canonical, and so we are generally reduced to existence theorems using this method -- unless there is a functorial way to construct Postnikov sections. Strictly speaking we can only say \emph{an} $n$-connected cover (except in special cases, like when $n=1$ and $X$ is a [[well-connected space]]). \hypertarget{functorial_constructions}{}\subsubsection*{{Functorial constructions}}\label{functorial_constructions} The $n$th stage of the Whitehead tower of $X$ is the [[homotopy fiber]] of the map from $X$ to the $n$th (or so) stage of its [[Postnikov tower]], so one can use a functorial construction of the Postnikov tower plus a functorial construction of the homotopy fiber (such as the usual one using the [[path object|path space]] of the target). The $n$th stage of the Whitehead tower of $X$ is also the cofibrant replacement for $X$ in the right [[Bousfield localization]] of [[Top]] with respect to the object $S^n$ (or so). Since [[Top]] is right proper and cellular this localization exists by the result of chapter 5 of Hirschhorn's book on [[localization]]s of [[model category|model categories]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{OfTheOrthogonalGroup}{}\subsubsection*{{Whitehead tower of the orthogonal group}}\label{OfTheOrthogonalGroup} The Whitehead tower of the [[classifying space]]/[[delooping]] of the [[orthogonal group]] $O(n)$ starts out as \begin{displaymath} \itexarray{ & \mathbf{\text{Whitehead tower}} \\ &\vdots \\ & B Fivebrane &\to& \cdots &\to& * \\ & \downarrow && && \downarrow \\ \mathbf{\text{second frac Pontr. class}} & B String &\to& \cdots &\stackrel{\tfrac{1}{6}p_2}{\to}& B^8 \mathbb{Z} &\to& * \\ & \downarrow && && \downarrow && \downarrow \\ \mathbf{\text{first frac Pontr. class}} & B Spin && && &\stackrel{\tfrac{1}{2}p_1}{\to}& B^4 \mathbb{Z} &\to & * \\ & \downarrow && && \downarrow && \downarrow && \downarrow \\ \mathbf{\text{second SW class}} & B S O &\to& \cdots &\to& &\to& & \stackrel{w_2}{\to} & \mathbf{B}^2 \mathbb{Z}_2 &\to& * \\ & \downarrow && && \downarrow && \downarrow && \downarrow && \downarrow \\ \mathbf{\text{first SW class}} & B O &\to& \cdots &\to& \tau_{\leq 8 } B O &\to& \tau_{\leq 4 } B O &\to& \tau_{\leq 2 } B O &\stackrel{w_1}{\to}& \tau_{\leq 1 } B O \simeq B \mathbb{Z}_2 & \mathbf{\text{Postnikov tower}} } \end{displaymath} where each square and each composite rectangle is a [[homotopy pullback]] square (all controled by the [[pasting law]]), where the stages are the deloopings of \ldots{} $\to$ [[fivebrane group]] $\to$ [[string group]] $\to$ [[spin group]] $\to$ [[special orthogonal group]] $\to$ [[orthogonal group]], where lifts through the stages correspond to \begin{itemize}% \item [[orthogonal structure]] \item [[orientation]] \item [[spin structure]] \item [[string structure]] \item [[fivebrane structure]] \end{itemize} and where the [[obstruction]] classes are the [[universal characteristic classes]] \begin{itemize}% \item [[first Stiefel-Whitney class]] $w_1$ \item [[second Stiefel-Whitney class]] $w_2$ \item [[Pontryagin class|first fractional Pontryagin class]] $\tfrac{1}{2}p_1$ \item [[Pontryagin class|second fractional Pontryagin class]] $\tfrac{1}{6}p_2$ \end{itemize} and where every possible square in the above is a [[homotopy pullback]] square (using the [[pasting law]]). For instance $w_2$ can be identified as such by representing $B O \to \tau_{\leq 2} B O \simeq BO/_{\sim_n}$ by a [[Kan fibration]] (see at [[Postnikov tower]]) between [[Kan complexes]] so that then the [[homotopy pullback]] (as discussed there) is given by an ordinary pullback. Since $sSet$ is a [[simplicial model category]], $sSet(S^2,-)$ can be applied and preserves the pullback as well as the homotopy pullback, hence sends $B O \to \tau_{\leq 2} B O$ to an isomorphism on connected components. This identifies $B SO \to B^2 \mathbb{Z}$ as being an [[isomorphism]] on the second [[homotopy group]]. Therefore, by the [[Hurewicz theorem]], it is also an isomorphism on the [[cohomology group]] $H^2(-,\mathbb{Z}_2)$. Analogously for the other characteristic maps. In summary, more concisely, the tower is \begin{displaymath} \itexarray{ \vdots \\ \downarrow \\ B Fivebrane \\ \downarrow \\ B String &\stackrel{\tfrac{1}{6}p_2}{\to}& B^7 U(1) & \simeq B^8 \mathbb{Z} \\ \downarrow \\ B Spin &\stackrel{\tfrac{1}{2}p_1}{\to}& B^3 U(1) & \simeq B^4 \mathbb{Z} \\ \downarrow \\ B SO &\stackrel{w_2}{\to}& B^2 \mathbb{Z}_2 \\ \downarrow \\ B O &\stackrel{w_1}{\to}& B \mathbb{Z}_2 \\ \downarrow^{\mathrlap{\simeq}} \\ B GL } \,, \end{displaymath} where each ``hook'' is a [[fiber sequence]]. Via the [[J-homomorphism]] this corresponds to the [[stable homotopy groups of spheres]]: [[!include image of J -- table]] \hypertarget{whitehead_tower_in_general_toposes}{}\subsection*{{Whitehead tower in general $(\infty,1)$-toposes}}\label{whitehead_tower_in_general_toposes} While a notion of [[Postnikov tower in an (∞,1)-category]] depends on the \emph{categorical} [[homotopy groups in an (∞,1)-topos|homotopy groups in an (∞,1)-category]], the notion of Whitehead tower makes good sense with respect to the \emph{geometric} homotopy groups. A good notion of geometric [[homotopy groups in an (∞,1)-topos]] exist in a [[locally contractible (∞,1)-topos]]. The notion of Whitehead tower in this context is discussed at \begin{itemize}% \item [[Whitehead tower in an (∞,1)-topos]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item Applying the [[Hurewicz theorem]] stagewise to a [[Whitehead tower]] yields an method for computing the [[homotopy groups]] of the original [[space]]. This process, or rather the refinement thereof for Whitehead towers generalized to [[Adams resolutions]], is formalized by the \emph{[[Adams spectral sequence]]}, see there for more. \item \emph{\href{https://ncatlab.org/nlab/show/permutation#WhietheadTowerAndSupersymmetry}{symmetric group -- Whitehead tower}} \end{itemize} [[!include Lurie spectral sequences -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original reference is \begin{itemize}% \item [[George Whitehead]] \emph{Fiber Spaces and the Eilenberg Homology Groups}, PNAS \textbf{38}, No. 5 (1952) \end{itemize} A textbook account is around example 4.20 in \begin{itemize}% \item [[Allen Hatcher]], \emph{Algebraic Topology} (\href{http://www.math.cornell.edu/~hatcher/AT/AT.pdf}{pdf}) \end{itemize} A more detailed useful discussion happens to be in section 2.A, starting on p. 11 of \begin{itemize}% \item [[Linus Kramer]], \emph{Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurface} Memoirs of the American Mathematical Society number 752 (\href{http://books.google.com/books?id=SA8O6ihrDFkC&printsec=frontcover&hl=de&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false}{web}) also (\href{http://arxiv.org/abs/math/0109133}{arXiv}) \end{itemize} [[!redirects Whitehead tower]] [[!redirects Whitehead towers]] \end{document}