\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Wick algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{AbstractWickAlgebra}{Abstract Wick algebra}\dotfill \pageref*{AbstractWickAlgebra} \linebreak \noindent\hyperlink{AbstractTimeOrderedProduct}{Abstract time-ordered product}\dotfill \pageref*{AbstractTimeOrderedProduct} \linebreak \noindent\hyperlink{OperatorProductAndNormalOrderedProduct}{Operator product notation}\dotfill \pageref*{OperatorProductAndNormalOrderedProduct} \linebreak \noindent\hyperlink{HadamardVacuumStatesOnWickAlgebras}{Hadamard vacuum states}\dotfill \pageref*{HadamardVacuumStatesOnWickAlgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} A \emph{Wick algebra} is an [[algebra of quantum observables]] of [[free fields|free]] [[quantum field theory|quantum fields]]. In the [[quantum mechanics]] of [[harmonic oscillators]] or in [[quantum field theory]] of [[free fields]] on [[Minkowski spacetime]] one encounters [[linear operators]] $\{a_k, a^\ast_k\}_{k \in K}$ that satisfy the [[canonical commutation relation]] $[a_i, a^\ast_j] = diag((c_k))_{i j}$. Then by a \emph{normal ordered polynomial} or \emph{Wick polynomial} (\hyperlink{Wick50}{Wick 50}) one means a [[polynomial]], denoted $:P:$, which is obtained from a polynomial $P((a_k, a^\ast_k))$ in these operators by ordering all ``creation operators'' $a_k^\ast$ to the left of all ``annihiliation operators''. For example focusing on a single mode $k$ we have: \begin{displaymath} \itexarray{ :a^\ast: = a^\ast \\ :a: = a \\ :a^\ast a: = a^\ast a \\ :a a^\ast: = a^\ast a \\ :a a^\ast a: = a^\ast a a \\ etc. } \, \end{displaymath} The intuitive idea is that these operators span a [[Hilbert space]] $\mathcal{H}$ of [[quantum states]] from a [[vacuum state]] $\vert vac \rangle \in \mathcal{H}$ characterized by the condition \begin{displaymath} a_k \vert vac \rangle = 0 \phantom{AAA} \text{for all} \,\, k \end{displaymath} hence (if we think of $a_k$ as acting by ``removing a quantum in mode $k$'') by the condition that it contains no quanta. So the normal ordered Wick polynomials represent the [[quantum observables]] with vanishing [[vacuum expectation value]]. In [[quantum field theory]] they model [[scattering]] processes where quanta enter a reaction process (the modes corresponding to the ``annihilation'' operators $a_k$) and other particles come out of the reaction (the modes corresppnding to the ``creation'' operators $a^\ast_k$). The product of two Wick polynomials, computed in the ambient operator algebra and then re-expressed as a Wick polynomial, is given by computing the relevant sequence of [[commutators]] by [[Wick's lemma]], for example \begin{displaymath} {:a^\ast a:} \, {:a^\ast a:} = :a^\ast a^\ast a a: + \hbar \, :a^\ast a: \,, \end{displaymath} where $\hbar = [a, a^\ast]$ is the value of the [[canonical commutation relations|canonical commutator]]. The [[associative algebra]] thus obtained is hence called the \emph{algebra of normal ordered operators} or \emph{Wick polynomial algebra} or just \emph{Wick algebra}. This plays a central role in [[perturbative quantum field theory]], where the [[quantization]] of [[quantum observables]] of [[free fields]] is traditionally \emph{defined} as the corresponding Wick algebra. But the Wick algebra in [[quantum field theory]] may also be understood more systematically from first principles of [[quantization]]. It turns out that it is [[Moyal deformation quantization]] of the canonical [[Poisson bracket]] on the [[covariant phase space]] of the [[free field]], which is the [[Peierls bracket]] modified to an [[almost Kähler structure]] by the [[2-point function]] of a [[quasi-free Hadamard state]] (\hyperlink{Dito90}{Dito 90}, \hyperlink{DutschFredenhagen01}{D\"u{}tsch-Fredenhagen 01}). In [[free field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations]] of motion, the analog of the star product tensor (\href{star+product#eq:InStarProductTensorInvertingHermitianForm}{this equation}) \begin{displaymath} \pi \;=\; \tfrac{i}{2}\omega^{-1} + \tfrac{1}{2}g^{-1} \end{displaymath} is the [[Wightman propagator]] according to \href{Hadamard+distribution#eq:DeompositionOfHadamardPropagatorOnMinkowkski}{this equation} \begin{displaymath} \Delta_H \;=\; \tfrac{i}{2}\Delta_S + H \,. \end{displaymath} Understood in this form the construction directly generalizes to [[quantum field theory on curved spacetimes]] (\hyperlink{BrunettiFredenhagen95}{Brunetti-Fredenhagen 95}, \hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00}, \hyperlink{HollandsWald01}{Hollands-Wald 01}). Finally, the shift by the [[quasi-free Hadamard state]], which is the very source of the ``normal ordering'', was understood as an example of the almost-K\"a{}hler version of the quantization recipe of [[Fedosov deformation quantization]] (\hyperlink{Collini16}{Collini 16}). For more on this see at \emph{[[locally covariant perturbative quantum field theory]]}. $\,$ \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Traditionally the Wick algebra is regarded as an [[operator algebra]] acting on a [[Fock space]]. However, it is useful to realize the Wick algebra directly as an [[associative algebra]] [[structure]] on the space of [[microcausal polynomial observables]]. This ``abstract'' Wick algebra (meaning: not [[representation|represented]] yet on a [[Hilbert space]]) we discuss in \begin{itemize}% \item \emph{\hyperlink{AbstractWickAlgebra}{Abstract Wick algebra}}. \end{itemize} That the abstract Wick algebra indeed has a [[faithful representation]] on [[Fock space]] is \emph{[[Wick's lemma]]}. Similarly there is the \begin{itemize}% \item \emph{\hyperlink{AbstractTimeOrderedProduct}{Abstract time-ordered product}} \end{itemize} The traditional notation for the [[operator products]] on the [[Fock space]] may be carried across the [[representation]] map to the abstract Wick algebra: \begin{itemize}% \item \emph{\hyperlink{OperatorProductAndNormalOrderedProduct}{Operator product notation}} \end{itemize} The abstract Wick algebra carries a canonical [[state on a star-algebra]], whose [[2-point function]] is just the [[Wightman propagator]] that the abstract Wick algebra structure is constructed from. This we discuss in \begin{itemize}% \item \emph{\hyperlink{HadamardVacuumStatesOnWickAlgebras}{Hadamard vacuum states}}. \end{itemize} The only non-trivial part of the proof of the [[state on a star-algebra|state]]-property (prop. \ref{WickAlgebraCanonicalState}) below is positivity. This however is immediate from the [[representation]] on the [[Fock space]], observing that under this identification the state is represented by the [[inner product]] of the [[Hilbert space]] (\hyperlink{Duetsch18}{Dütsch 18, remark 2.20}). From the point of view of [[algebraic quantum field theory]], the [[Hilbert space]]-structure mainly just serves as a technical tool for establishing this positivity property. \hypertarget{AbstractWickAlgebra}{}\subsubsection*{{Abstract Wick algebra}}\label{AbstractWickAlgebra} The abstract [[Wick algebra]] of a [[free field theory]] with [[Green hyperbolic differential equation]] is directly analogous to the [[star product]]-algebra induced by a [[finite dimensional vector space|finite dimensional]] [[Kähler vector space]] (\href{star+product#WickAlgebraOfAlmostKaehlerVectorSpace}{this def.}) under the following identification of the [[Wightman propagator]] with the [[Kähler space]]-[[structure]]: \begin{remark} \label{WightmanPropagatorAsKaehlerVectorSpaceStructure}\hypertarget{WightmanPropagatorAsKaehlerVectorSpaceStructure}{} \textbf{([[Wightman propagator]] as [[Kähler vector space]]-[[structure]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] whose [[Euler-Lagrange equation|Euler-Lagrange]] [[equation of motion]] is a [[Green hyperbolic differential equation]]. Then the corresponding [[Wightman propagator]] is analogous to the rank-2 tensor on a [[Kähler vector space]] as follows: \newline | [[space of field histories]] $\Gamma_\Sigma(E)$ | $\mathbb{R}^{2n}$ | | [[symplectic form]] $\tau_{\Sigma_p} \Omega_{BFV}$ | [[Kähler form]] $\omega$ | | [[causal propagator]] $\Delta$ | $\omega^{-1}$ | | [[Peierls-Poisson bracket]] $\{A_1,A_2\} = \int \Delta^{a_1 a_2}(x_1,x_2) \frac{\delta A_1}{\delta \mathbf{\Phi}^{a_1}(x_1)} \frac{\delta A_2}{\delta \mathbf{\Phi}^{a_2}(x_2)} dvol_\Sigma(x)$ | [[Poisson bracket]] | | [[Wightman propagator]] $\Delta_H = \tfrac{i}{2} \Delta + H$ | [[Hermitian form]] $\pi = \tfrac{i}{2}\omega^{-1} + \tfrac{1}{2}g^{-1}$ | \end{remark} (\href{pAQFT#FredenhagenRejzner15}{Fredenhagen-Rejzner 15, section 3.6}, \href{pAQFT#Collini16}{Collini 16, table 2.1}) \begin{defn} \label{MicrocausalObservable}\hypertarget{MicrocausalObservable}{} \textbf{([[microcausal observable|microcausal]] [[polynomial observables]])} Let $E \overset{fb}{\to}$ be [[field bundle]] which is a [[vector bundle]]. An [[off-shell]] \emph{[[polynomial observable]]} is a [[smooth function]] \begin{displaymath} A \;\colon\; \Gamma_\Sigma(E) \longrightarrow \mathbb{C} \end{displaymath} on the [[on-shell]] [[space of sections]] of the [[field bundle]] $E \overset{fb}{\to} \Sigma$ (space of field histories) which may be expressed as \begin{displaymath} \begin{aligned} A(\Phi) & = \phantom{+} \alpha^{(0)} \\ & \phantom{=} + \int_\Sigma \alpha^{(1)}_a(x) \Phi^a(x) \, dvol_\Sigma(x) \\ & \phantom{=} + \int_\Sigma \int_\Sigma \alpha^{(2)}_{a_1 a_2}(x_1, x_2) \Phi^{a_1}(x_1) \Phi^{a_2}(x_2) \,dvol_\Sigma(x_1) \, dvol_\Sigma(x_2) \\ & \phantom{=} + \cdots \,, \end{aligned} \end{displaymath} where \begin{displaymath} \alpha^{(k)} \in \Gamma'_{\Sigma^k}\left((E^\ast)^{\boxtimes^k_{sym}} \right) \end{displaymath} is a [[compactly supported distribution]] [[distribution of two variables|of k variables]] on the $k$-fold graded-symmetric [[external tensor product of vector bundles]] of the [[field bundle]] with itself. Write \begin{displaymath} PolyObs(E) \hookrightarrow Obs(E) \end{displaymath} for the [[subspace]] of off-shell polynomial observables onside all off-shell [[observables]]. Let moreover $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] whose [[equations of motion]] are [[Green hyperbolic differential equations]]. Then an \emph{[[on-shell]] polynomial observable} is the [[restriction]] of an off-shell polynomial observable along the inclusion of the [[on-shell]] [[space of field histories]] $\Gamma_{\Sigma}(E)_{\delta_{EL}\mathbf{L} = 0} \hookrightarrow \Gamma_\Sigma(E)$. Write \begin{displaymath} PolyObs(E,\mathbf{L}) \hookrightarrow Obs(E,\mathbf{L}) \end{displaymath} for the subspace of all on-shell polynomial observables inside all on-shell [[observables]]. By \href{Green+hyperbolic+partial+differential+equation#DistributionsOnSolutionSpaceAreTheGeneralizedPDESolutions}{this prop.} restriction yields an [[isomorphism]] between polynomial on-shell observables and polynomial off-shell observables modulo the image of the [[differential operator]] $P$: \begin{displaymath} PolyObs(E,\mathbf{L}) \underoverset{\simeq}{\text{restriction}}{\longleftarrow} PolyObs(E)/im(P) \,. \end{displaymath} Finally a polynomial observable is a \emph{[[microcausal observable]]} if each [[coefficient]] $\alpha^{(k)}$ as above has [[wave front set]] away from those points where the $k$ [[wave vectors]] are all in the [[future cone]] or all in the [[past cone]]. We write \begin{displaymath} \itexarray{ PolyObs(E)_{mc} &\hookrightarrow& PolyObs(E) \\ PolyObs(E,\mathbf{L})_{mc} \simeq PolyObs(E)_{mc}/im(P) &\hookrightarrow& PolyObs(E,\mathbf{L}) } \end{displaymath} for the [[subspace]] of [[off-shell]]/[[on-shell]] [[microcausal observables]] inside all [[off-shell]]/[[on-shell]] [[polynomial observables]]. \end{defn} \begin{prop} \label{MoyalStarProductOnMicrocausal}\hypertarget{MoyalStarProductOnMicrocausal}{} \textbf{([[Hadamard distribution|Hadamard]]-[[Moyal star product]] on [[microcausal observables]] -- [[abstract Wick algebra]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] $P \Phi = 0$. Write $\Delta$ for the [[causal propagator]] and let \begin{displaymath} \Delta_H \;=\; \tfrac{i}{2}\Delta + H \end{displaymath} be a corresponding [[Wightman propagator]] ([[Hadamard 2-point function]]). Then the [[star product]] induced by $\Delta_H$ \begin{displaymath} A \star_H A \;\coloneqq\; prod \circ \exp\left( \int_{X^2} \hbar \Delta_H^{a b}(x_1, x_2) \frac{\delta}{\delta \mathbf{\Phi}^a(x_1)} \otimes \frac{\delta}{\delta \mathbf{\Phi}^b(x_2)} dvol_g \right) (P_1 \otimes P_2) \end{displaymath} on [[off-shell]] [[microcausal observables]] $A_1, A_2 \in \mathcal{F}_{mc}$ (def. \ref{MicrocausalObservable}) is well defined in that the [[wave front sets]] involved in the [[products of distributions]] that appear in expanding out the [[exponential]] satisfy [[Hörmander's criterion]]. Hence by the general properties of [[star products]] (\href{star+product#AssociativeAndUnitalStarProduct}{this prop.}) this yields a [[unital algebra|unital]] [[associative algebra]] [[structure]] on the space of [[formal power series]] in $\hbar$ of [[off-shell]] [[microcausal observables]] \begin{displaymath} \left( PolyObs(E)_{mc}[ [\hbar] ] \,,\, \star_H \right) \,. \end{displaymath} This is the \emph{[[off-shell]] [[Wick algebra]]} corresponding to the choice of [[Wightman propagator]] $H$. Moreover the image of $P$ is an ideal with respect to this algebra structure, so that it descends to the [[on-shell]] [[microcausal observables]] to yield the \emph{[[on-shell]] [[Wick algebra]]} \begin{displaymath} \left( PolyObs(E,\mathbf{L})_{mc}[ [ \hbar ] ] \,,\, \star_H \right) \,. \end{displaymath} Finally, under [[complex conjugation]] $(-)^\ast$ these are [[star algebras]] in that \begin{displaymath} \left( A_1 \star_H A_2 \right)^\ast = A_2^\ast \star_H A_1^\ast \,. \end{displaymath} \end{prop} (\hyperlink{Dito90}{Dito 90}, \hyperlink{DuetschFredenhagen00}{Dütsch-Fredenhagen 00} \hyperlink{DuetschFredenhagen01}{Dütsch-Fredenhagen 01}, \hyperlink{HirschfeldHenselder02}{Hirshfeld-Henselder 02}, see \hyperlink{Collini16}{Collini 16, p. 25-26}) \begin{proof} By definition of the [[Wightman propagator]] (or else by \href{Hadamard+distribution#WaveFronSetsForKGPropagatorsOnMinkowski}{this prop.}), the [[wave front set]] of powers of $\Delta_H$ has all cotangent [[wave vectors]] on the first variables in the [[closed future cone]] at the given base point (which itself is on the [[light cone]]) and hence all those on the second variables in the [[closed past cone]]. The first variables are integrated against those of $A_1$ and the second against $A_2$. By definition of [[microcausal observables]] (def. \ref{MicrocausalObservable}), the wave front sets of $A_1$ and $A_2$ are disjoint from the subsets where all components are in the [[closed future cone]] or all components are in the [[closed past cone]]. Therefore the relevant sum of of the wave front covectors never vanishes and hence [[Hörmander's criterion]] for partial [[products of distributions|products of]] [[distributions of several variables]] (\href{product+of+distributions#PartialProductOfDistributionsOfSeveralVariables}{this prop.}) is met and the star product is well defined. It remains to see that the star product $A_1 \star_H A_2$ is itself again a [[microcausal observable]]. It is clear that it is again a [[polynomial observable]] and that it respects the ideal generated by the equations of motion. That it still satisfies the condition on the [[wave front set]] follows directly from the fact that the wave front set of a [[product of distributions]] is inside the fiberwise sum of elements of the factor wave front sets (\href{product+of+distributions#WaveFrontSetOfProductOfDistributionsInsideFiberProductOfFactorWaveFrontSets}{this prop.}, \href{}{}). Finally the [[star algebra]]-structure follows via remark \ref{WightmanPropagatorAsKaehlerVectorSpaceStructure} as in \href{star+product#StarProductAlgebraOfKaehlerVectorSpaceIsStarAlgebra}{this prop.}. \end{proof} \begin{remark} \label{WickAlgebraIsFormalDeformationQuantization}\hypertarget{WickAlgebraIsFormalDeformationQuantization}{} \textbf{([[Wick algebra]] is [[formal deformation quantization]] of [[Poisson-Peierls bracket|Poisson-Peierls algebra of observables]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] $P \Phi = 0$ with [[causal propagator]] $\Delta$ and let $\Delta_H \;=\; \tfrac{i}{2}\Delta + H$ be a corresponding [[Wightman propagator]] ([[Hadamard 2-point function]]). Then the [[Wick algebra]] $\left( PolyObs(E,\mathbf{L})_{mc}[ [\hbar] ] \,,\, \star_H \right)$ from prop. \ref{MoyalStarProductOnMicrocausal} is a [[formal deformation quantization]] of the [[Poisson algebra]] on the [[covariant phase space]] given by the [[on-shell]] [[polynomial observables]] equipped with the [[Poisson-Peierls bracket]] $\{-,-\} \;\colon\; PolyObs(E,\mathbf{L})_{mc} \otimes PolyObs(E,\mathbf{L})_{mc} \to PolyObs(E,\mathbf{L})_{mc}$ in that for all $A_1, A_2 \in PolyObs(E,\mathbf{L})_{mc}$ we have \begin{displaymath} A_1 \star_H A_2 \;=\; A_1 \cdot A_2 \;mod\; \hbar \end{displaymath} and \begin{displaymath} A_1 \star_H A_2 - A_2 \star_H a_1 \;=\; i \hbar \{A_1, A_2\} \;mod\; \hbar^2 \,. \end{displaymath} \end{remark} (\hyperlink{Dito90}{Dito 90}, \hyperlink{DutschFredenhagen01}{Dütsch-Fredenhagen 01}) \begin{proof} By prop. \ref{MoyalStarProductOnMicrocausal} this is immediate from the general properties of the [[star product]] (\href{A+first+idea+of+quantum+field+theory+--+Quantization#MoyalStarProductIsFormalDeformationQuantization}{this example}). Explicitly, consider, without restriction of generality, $A_1 = \int (\alpha_1)_a(x) \mathbf{\Phi}^a(x)\, dvol_\Sigma(x)$ and $A_2 = \int (\alpha_2)_a(x) \mathbf{\Phi}^a(x)\, dvol_\Sigma(x)$ be two linear observables. Then \begin{displaymath} \begin{aligned} A_1 \star_H A_2 & = A_1 A_2 + \hbar \int \left( \tfrac{i}{2} \Delta^{a_1 a_2}(x_1, x_2) + H^{a_1 a_2}(x_1,x_2) \right) \frac{\partial A_1}{\partial \mathbf{\Phi}^{a_1}(x_1)} \frac{\partial A_2}{\partial \mathbf{\Phi}^{a_2}(x_2)} \;mod\; \hbar^2 \\ & = A_1 A_2 + \hbar \left( \int (\alpha_1)_{a_1}(x_1) \left( \tfrac{i}{2}\Delta^{a_1 a_2}(x_1, x_2) + H^{a_1 a_2}(x_1, x_2) \right) (\alpha_2)_{a_2}(x_2) \right) \;mod\; \hbar^2 \end{aligned} \end{displaymath} Now since $\Delta$ is skew-symmetric while $H$ is symmetric is follows that \begin{displaymath} \begin{aligned} A_1 \star_H A_2 - A_2 \star_H A_1 & = i \hbar \left( \int (\alpha_1)_{a_1}(x_1) \Delta^{a_1 a_2}(x_1, x_2) (\alpha_2)_{a_2}(x_2) \right) \;mod\; \hbar^2 \\ & = i \hbar \, \left\{ A_1, A_2\right\} \end{aligned} \,. \end{displaymath} The right hand side is the [[integral kernel]]-expression for the [[Poisson-Peierls bracket]], as shown in the second line. \end{proof} \hypertarget{AbstractTimeOrderedProduct}{}\subsubsection*{{Abstract time-ordered product}}\label{AbstractTimeOrderedProduct} \begin{defn} \label{OnRegularPolynomialObservablesTimeOrderedProduct}\hypertarget{OnRegularPolynomialObservablesTimeOrderedProduct}{} \textbf{([[time-ordered product]] on [[regular polynomial observables]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] over a [[Lorentzian manifold|Lorentzian]] [[spacetime]] and with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[differential equations]]; write $\Delta_S = \Delta_+ - \Delta_-$ for the induced [[causal propagator]]. Let moreover $\Delta_H = \tfrac{i}{2}\Delta_S + H$ be a compatible [[Wightman propagator]] and write $\Delta_F = \tfrac{i}{2}(\Delta_+ + \Delta_-) + H$ for the induced [[Feynman propagator]]. Then the \emph{[[time-ordered product]]} on the space of [[off-shell]] [[regular polynomial observable]] $PolyObs(E)_{reg}$ is the [[star product]] induced by the [[Feynman propagator]] (via \href{star+product#PropagatorStarProduct}{this prop.}): \begin{displaymath} \itexarray{ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] \\ (A_1, A_2) &\mapsto& \phantom{\coloneqq} A_1 \star_F A_2 } \end{displaymath} hence \begin{displaymath} A_1 \star_F A_2 \; \coloneqq \; ((-)\cdot(-)) \circ \exp\left( \underset{\Sigma \times \Sigma}{\int} \Delta_F^{a b}(x,y) \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \otimes \frac{\delta}{\delta \mathbf{\Phi}^b(y)} \, dvol_\Sigma(x) \, dvol_\Sigma(y) \right) \end{displaymath} (Notice that this does not descend to the [[on-shell]] observables, since the [[Feynman propagator]] is not a solution to the \emph{homogeneous} [[equations of motion]].) \end{defn} \begin{prop} \label{CausalOrderingTimeOrderedProductOnRegular}\hypertarget{CausalOrderingTimeOrderedProductOnRegular}{} \textbf{([[time-ordered product]] is indeed causally ordered [[Wick algebra]] product)} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] over a [[Lorentzian manifold|Lorentzian]] [[spacetime]] and with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[differential equations]]; write $\Delta_S = \Delta_+ - \Delta_-$ for the induced [[causal propagator]]. Let moreover $\Delta_H = \tfrac{i}{2}\Delta_S + H$ be a compatible [[Wightman propagator]] and write $\Delta_F = \tfrac{i}{2}(\Delta_+ + \Delta_-) + H$ for the induced [[Feynman propagator]]. Then the [[time-ordered product]] on [[regular polynomial observables]] (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) is indeed a time-ordering of the [[Wick algebra]] product $\star_H$ in that for all [[pairs]] of [[regular polynomial observables]] \begin{displaymath} A_1, A_2 \in PolyObs(E)_{reg}[ [\hbar] ] \end{displaymath} with [[disjoint subset|disjoint]] [[spacetime]] [[support]] we have \begin{displaymath} A_1 \star_F A_2 \;=\; \left\{ \itexarray{ A_1 \star_H A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \star_H A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \,. \end{displaymath} Here $S_1 {\vee\!\!\!\wedge} S_2$ is the [[causal order]] relation (``$S_1$ does not intersect the [[past cone]] of $S_2$''). Beware that for general [[pairs]] $(S_1, S-2)$ of subsets neither $S_1 {\vee\!\!\!\wedge} S_2$ nor $S_2 {\vee\!\!\!\wedge} S_1$. \end{prop} \begin{proof} Recall the following facts: \begin{enumerate}% \item the [[advanced and retarded propagators]] $\Delta_{\pm}$ by definition are [[support|supported]] in the [[future cone]]/[[past cone]], respectively \begin{displaymath} supp(\Delta_{\pm}) \subset \overline{V}^{\pm} \end{displaymath} \item they turn into each other under exchange of their arguments (\href{causal+propagator#CausalPropagatorIsSkewSymmetric}{this cor.}): \begin{displaymath} \Delta_\pm(y,x) = \Delta_{\mp}(x,y) \,. \end{displaymath} \item the real part $H$ of the [[Feynman propagator]], which by definition is the real part of the [[Wightman propagator]] is symmetric (by definition or else by \href{Hadamard+distribution#SkewSymmetricPartOfHadmrdPropagatorIsCausalPropagatorForKleinGordonEquationOnMinkowskiSpacetime}{this prop.}): \begin{displaymath} H(x,y) = H(y,x) \end{displaymath} \end{enumerate} Using this we compute as follows: \begin{equation} \begin{aligned} A_1 \underset{\Delta_{F}}{\star} A_2 \; & = A_1 \underset{\tfrac{i}{2}(\Delta_+ + \Delta_-) + H}{\star} A_2 \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_1 \underset{\tfrac{i}{2}\Delta_- + H}{\star} A_2 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}(\Delta_+ - \Delta_-) + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\tfrac{i}{2}(\Delta_+ - \Delta_-) + H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\Delta_H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\Delta_H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \end{aligned} \label{CausallyOrderedWickProductViaFeynmanPropagator}\end{equation} \end{proof} \begin{prop} \label{IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}\hypertarget{IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{} \textbf{([[time-ordered product]] on [[regular polynomial observables]] [[isomorphism|isomorphic]] to pointwise product)} The [[time-ordered product]] on [[regular polynomial observables]] (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) is [[isomorphism|isomorphic]] to the pointwise product of [[observables]] (\href{A+first+idea+of+quantum+field+theory#Observable}{this def.}) via the [[linear isomorphism]] \begin{displaymath} \mathcal{T} \;\colon\; PolyObs(E)_{reg}[ [\hbar] ] \longrightarrow PolyObs(E)_{reg}[ [\hbar] ] \end{displaymath} given by \begin{equation} \mathcal{T}A \;\coloneqq\; \exp\left( \tfrac{1}{2} \hbar \underset{\Sigma}{\int} \Delta_F(x,y)^{a b} \frac{\delta^2}{\delta \mathbf{\Phi}^a(x) \delta \mathbf{\Phi}^b(y)} \right) A \label{OnRegularPolynomialObservablesPointwiseTimeOrderedIsomorphism}\end{equation} in that \begin{displaymath} \begin{aligned} T(A_1 A_2) & \coloneqq A_1 \star_{F} A_2 \\ & = \mathcal{T}( \mathcal{T}^{-1}(A_1) \cdot \mathcal{T}^{-1}(A_2) ) \end{aligned} \end{displaymath} hence \begin{displaymath} \itexarray{ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{(-)\cdot (-)}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] \\ {}^{\mathllap{\mathcal{T} \otimes \mathcal{T}}}_\simeq\Big\downarrow && \downarrow^{\mathrlap{\mathcal{T}}}_\simeq \\ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{(-) \star_F (-)}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] } \end{displaymath} \end{prop} (\href{time-ordered+product#BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09, (12)-(13)}, \href{time-ordered+product#FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b, (14)}) \begin{proof} Since the [[Feynman propagator]] is symmetric (\href{A+first+idea+of+quantum+field+theory#SymmetricFeynmanPropagator}{this prop.}), the statement is a special case of \href{star+product#SymmetricContribution}{this prop.}). \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{([[renormalization]] of [[time-ordered product]])} The [[time-ordered product]] on [[regular polynomial observables]] from prop. \ref{OnRegularPolynomialObservablesTimeOrderedProduct} extends to a product on [[polynomial observable|polynomial]] [[local observables]], then taking values in [[microcausal observables]]: \begin{displaymath} T \;\colon\; PolyLocObs(E)^{\otimes_n}[ [\hbar] ] \longrightarrow PolyObs(E)_{mc}[ [\hbar] ] \,. \end{displaymath} This extension is not unique. A choice of such an extension, satisfying some evident compatibility conditions, is a choice of \emph{[[renormalization scheme]]} for the given [[perturbative quantum field theory]]. Every such choice corresponds to a choice of [[perturbative S-matrix]] for the theory. This construction is called \emph{[[causal perturbation theory]]}. \end{remark} \hypertarget{OperatorProductAndNormalOrderedProduct}{}\subsubsection*{{Operator product notation}}\label{OperatorProductAndNormalOrderedProduct} \begin{defn} \label{NormalOrderedProductNotation}\hypertarget{NormalOrderedProductNotation}{} \textbf{(notation for [[operator product]] and [[normal-ordered product]])} It is traditional to use the following alternative notation for the product structures on [[microcausal polynomial observables]]: \begin{enumerate}% \item The [[Wick algebra]]-product, hence the [[star product]] $\star_H$ for the [[Wightman propagator]] (def. \ref{MoyalStarProductOnMicrocausal}), is rewritten as plain juxtaposition: \begin{displaymath} \text{"operator product"} \phantom{AAA} A_1 A_2 \phantom{AA} \coloneqq \phantom{AA} A_1 \star_H A_1 \phantom{AAAA} \itexarray{ \text{star product of} \\ \text{Wightman propagator} } \,. \end{displaymath} \item The pointwise product of observables (\href{A+first+idea+of+quantum+field+theory#Observable}{this def.}) $A_1 \cdot A_2$ is equivalently written as plain juxtaposition enclosed by colons: \begin{displaymath} \itexarray{ \text{"normal-ordered} \\ \text{product"} } \phantom{AAAA} :A_1 A_2: \phantom{AA}\coloneqq\phantom{AA} A_1 \cdot A_2 \phantom{AAAA} \phantom{AAa}\text{pointwise product}\phantom{AAa} \end{displaymath} \item The [[time-ordered product]], hence the [[star product]] for the [[Feynman propagator]] $\star_F$ (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) is equivalently written as plain juxtaposition prefixed by a ``$T$'' \begin{displaymath} \itexarray{ \text{"time-ordered} \\ \text{product"} } \phantom{AAAA} T(A_1 A_2) \phantom{AA}\coloneqq\phantom{AA} A_1 \star_F A_2 \phantom{AAAA} \itexarray{ \text{star product of} \\ \text{Feynman propagator} } \end{displaymath} \end{enumerate} Under [[representation]] of the [[Wick algebra]] on a [[Fock space|Fock]] [[Hilbert space]] by [[linear operators]] the first product become the \emph{[[operator product]]}, while the second becomes the operator poduct applied after suitable re-ordering, called ``[[normal-ordered product|normal odering]]'' of the factors. Disregarding the [[Fock space]]-representation, which is [[faithful representation|faithful]], we may still refer to these ``abstract'' products as the ``operator product'' and the ``normal-ordered product'', respectively. \end{defn} [[!include Wick algebra -- table]] \hypertarget{HadamardVacuumStatesOnWickAlgebras}{}\subsubsection*{{Hadamard vacuum states}}\label{HadamardVacuumStatesOnWickAlgebras} \begin{prop} \label{WickAlgebraCanonicalState}\hypertarget{WickAlgebraCanonicalState}{} \textbf{(canonical [[Hadamard vacuum state|vacuum]] [[state on a star-algebra|states]] on abstract [[Wick algebra]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[equations of motion]]; and let $\Delta_H$ be a compatible [[Wightman propagator]]. For \begin{displaymath} \Phi_0 \in \Gamma_\Sigma(E)_{\delta_{EL}\mathbf{L} = 0} \end{displaymath} any [[on-shell]] [[field history]] (i.e. solving the [[equations of motion]]), consider the function from the [[Wick algebra]] to [[formal power series]] in $\hbar$ with [[coefficients]] in the [[complex numbers]] which evaluates any [[microcausal polynomial observable]] on $\Phi_0$ \begin{displaymath} \itexarray{ PolyObs(E,\mathbf{L})_{mc}[ [[\hbar] ] &\overset{\langle -\rangle_{\Phi_0}}{\longrightarrow}& \mathbb{C}[ [\hbar] ] \\ A &\mapsto& A(\Phi_0) } \end{displaymath} Specifically for $\Phi_0 = 0$ (which is a solution of the [[equations of motion]] by the assumption that $(E,\mathbf{L})$ defines a [[free field theory]]) this is the function \begin{displaymath} \itexarray{ PolyObs(E,\mathbf{L})_{mc}[ [[\hbar] ] &\overset{\langle -\rangle_0}{\longrightarrow}& \mathbb{C}[ [\hbar] ] \\ \left. \begin{aligned} A & = \alpha^{(0)} \\ & \phantom{=} + \underset{\Sigma}{\int} \alpha^{(1)}_a(x) \mathbf{\Phi}^a(x) \, dvol_\Sigma(x) \\ & \phantom{=} + \cdots \end{aligned} \right\} &\mapsto& A(0) = \alpha^{(0)} } \end{displaymath} which sends each [[microcausal polynomial observable]] to its value $A(\Phi = 0)$ on the zero [[field history]], hence to the constant contribution $\alpha^{(0)}$ in its [[polynomial]] expansion. The function $\langle -\rangle_0$ is \begin{enumerate}% \item [[linear function|linear]] over $\mathbb{C}[ [\hbar] ]$; \item real, in that for all $A \in PolyObs(E,\mathbf{L})_{mc}[ [\hbar] ]$ \begin{displaymath} \langle A^\ast \rangle = \langle A \rangle^\ast \end{displaymath} \item positive, in that for every $A \in PolyObs(E,\mathbf{L})_{mc}[ [\hbar] ]$ there exist a $c_A \in \mathbb{C}[ [\hbar] ]$ such that \begin{displaymath} \langle A^\ast \star_H A\rangle_{\Phi_0} = c_A^\ast \cdot c_A \,, \end{displaymath} \item normalized, in that \begin{displaymath} \langle 1\rangle_H = 1 \end{displaymath} \end{enumerate} where $(-)^\ast$ denotes componet-wise [[complex conjugation]]. This means that $\langle -\rangle_{0}$ is a [[state on a star-algebra|states]] on the [[Wick algebra|Wick]] [[star-algebra]] $\left( (PolyObs(E,\mathbf{L}))_{mc}[ [\hbar] ], \star_H\right)$ (prop. \ref{MoyalStarProductOnMicrocausal}). One says that \begin{itemize}% \item $\langle - \rangle_0$ is a \emph{[[Hadamard vacuum state]]}; \end{itemize} and generally \begin{itemize}% \item $\langle - \rangle_{\Phi_0}$ is called a \emph{[[coherent state]]}. \end{itemize} \end{prop} (\hyperlink{Duetsch18}{Dütsch 18, def. 2.12, remark 2.20, def. 5.28, exercise 5.30 and equations (5.178)}) \begin{proof} The properties of linearity, reality and normalization are obvious, what requires proof is positivity. This is proven by exhibiting a [[representation]] of the Wick algebra on a [[Fock space|Fock]] [[Hilbert space]] (this algebra [[homomorphism]] is \emph{[[Wick's lemma]]}), with formal powers in $\hbar$ suitably taken care of, and showing that under this representation the function $\langle -\rangle_0$ is represented, degreewise in $\hbar$, by the [[inner product]] of the [[Hilbert space]]. \end{proof} \begin{example} \label{HadamardMoyalStarProductOfTwoLinearObservables}\hypertarget{HadamardMoyalStarProductOfTwoLinearObservables}{} \textbf{([[operator product]] of two [[linear observables]])} Let \begin{displaymath} A_i \in LinObs(E,\mathbf{L})_{mc} \hookrightarrow PolyObs(E,\mathbf{L})_{mc} \end{displaymath} for $i \in \{1,2\}$ be two [[linear observable|linear]] [[microcausal observables]] represented by [[distributions]] which in [[generalized function]]-notation are given by \begin{displaymath} A_i \;=\; \int (\alpha_i)_{a_i}(x_i) \mathbf{\Phi}^{a_i}(x_i) \, dvol_\Sigma(x_i) \,. \end{displaymath} Then their Hadamard-Moyal [[star product]] (prop. \ref{MoyalStarProductOnMicrocausal}) is the [[sum]] of their pointwise product with their value \begin{equation} \langle A_1 \star_H A_2 \rangle_0 \;\coloneqq\; i \hbar \int \int (\alpha_1)_{a_1}(x_1) \Delta_H^{a_1 a_2}(x_1,x_2) (\alpha_2)_{a_2}(x_2) \,dvol_\Sigma(x_1) \,dvol_\Sigma(x_2) \label{EvaluatingLinearObservablesInWightmanPropagator}\end{equation} in the [[Wightman propagator]], which is the value of the [[Hadamard vacuum state]] from prop. \ref{WickAlgebraCanonicalState} \begin{displaymath} A_1 \star_H A_2 \;=\; A_1 \cdot A_2 \;+\; \langle A_1 \star_H A_2 \rangle_0 \end{displaymath} In the [[operator product]]/[[normal-ordered product]]-notation of def. \ref{NormalOrderedProductNotation} this reads \begin{displaymath} A_1 A_2 \;=\; :A_1 A_2: \;+\; \langle A_1 A_2\rangle \,. \end{displaymath} \end{example} \begin{example} \label{WeylRelations}\hypertarget{WeylRelations}{} \textbf{([[Weyl relations]])} Let $(E,\mathbf{L})$ a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green hyperbolic]] [[equations of motion]] and with [[Wightman propagator]] $\Delta_H$. Then for \begin{displaymath} A_1, A_2 \;\in\; LinObs(E,\mathbf{L})_{mc} \hookrightarrow PolyObs(E,\mathbf{L})_{mc} \end{displaymath} two [[linear observables|linear]] [[microcausal observables]], the Hadamard-Moyal star product (def. \ref{MoyalStarProductOnMicrocausal}) of their [[exponentials]] exhibits the [[Weyl relations]]: \begin{displaymath} e^{A_1} \star_H e^{A_2} \;=\; e^{A_1 + A_2} \; e^{\langle A_1 \star_H A_2\rangle_0} \end{displaymath} where on the right we have the [[exponential]] of the value of the [[Hadamard vacuum state]] (prop. \ref{WickAlgebraCanonicalState}) as in example \ref{HadamardMoyalStarProductOfTwoLinearObservables}. \end{example} (e.g. \hyperlink{Duetsch18}{Dütsch 18, exercise 2.3}) \begin{example} \label{}\hypertarget{}{} \textbf{([[Wightman propagator]] is [[2-point function]] in the [[Hadamard vacuum state]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[equations of motion]]; and let $\Delta_H$ be a compatible [[Wightman propagator]]. With respect to the induced [[Hadamard vacuum state]] $\langle - \rangle_0$ from prop. \ref{WickAlgebraCanonicalState}, the [[Wightman propagator]] $\Delta_H(x,y)$ itself is the \emph{[[2-point function]]}, namely the [[distribution|distributional]] [[vacuum expectation value]] of the operator product of two [[field observables]]: \begin{displaymath} \left\langle \mathbf{\Phi}^a(x) \star_H \mathbf{\Phi}^b(y) \right\rangle_0 \;=\; \underset{ = 0 }{ \underbrace{ \left\langle \mathbf{\Phi}(x) \cdot \mathbf{\Phi}(y) \right\rangle }} + \underset{ = \hbar \Delta^{a b}_H(x,y) }{ \underbrace{ \left \langle \hbar \underset{\Sigma \times \Sigma}{\int} \delta(x-x') \Delta^{a b}_H(x,y) \delta(y-y') \right\rangle }} \end{displaymath} by example \ref{HadamardMoyalStarProductOfTwoLinearObservables}. Equivalently in the [[operator product]]-notation of def. \ref{NormalOrderedProductNotation} this reads: \begin{displaymath} \left\langle \mathbf{\Phi}^a(x) \mathbf{\Phi}^b(y) \right\rangle_0 \;=\; \hbar \Delta_H(x,y) \,. \end{displaymath} \end{example} Similarly: \begin{example} \label{}\hypertarget{}{} \textbf{([[Feynman propagator]] is time-ordered [[2-point function]] in the [[Hadamard vacuum state]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[equations of motion]]; and let $\Delta_H$ be a compatible [[Wightman propagator]] with induced [[Feynman propagator]] $\Delta_F$. With respect to the induced [[Hadamard vacuum state]] $\langle - \rangle_0$ from prop. \ref{WickAlgebraCanonicalState}, the [[Feynman propagator]] $\Delta_F(x,y)$ itself is the \emph{time-ordered [[2-point function]]}, namely the [[distribution|distributional]] [[vacuum expectation value]] of the [[time-ordered product]] (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) of two [[field observables]]: \begin{displaymath} \left\langle T\left( \mathbf{\Phi}^a(x) \star_F \mathbf{\Phi}^b(y) \right) \right\rangle_0 \;=\; \underset{ = 0 }{ \underbrace{ \left\langle \mathbf{\Phi}(x) \cdot \mathbf{\Phi}(y) \right\rangle }} + \underset{ = \hbar \Delta^{a b}_H(x,y) }{ \underbrace{ \left \langle \hbar \underset{\Sigma \times \Sigma}{\int} \delta(x-x') \Delta^{a b}_F(x,y) \delta(y-y') \right\rangle }} \end{displaymath} analogous to example \ref{HadamardMoyalStarProductOfTwoLinearObservables}. Equivalently in the [[operator product]]-notation of def. \ref{NormalOrderedProductNotation} this reads: \begin{displaymath} \left\langle T\left( \mathbf{\Phi}^a(x) \mathbf{\Phi}^b(y) \right) \right\rangle_0 \;=\; \hbar \Delta_F(x,y) \,. \end{displaymath} \end{example} [[!include propagators - table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include products in pQFT -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The construction goes back to \begin{itemize}% \item [[Gian-Carlo Wick]], \emph{The evaluation of the collision matrix}, Phys. Rev. 80, 268-272 (1950) \end{itemize} Its realization as the [[Moyal deformation quantization]] of the [[Peierls bracket]] shifted by a [[quasi-free Hadamard state]] is due to \begin{itemize}% \item Joseph Dito, \emph{Star-product approach to quantum field theory: The free scalar field}. Letters in Mathematical Physics, 20(2):125--134, 1990 (\href{https://inspirehep.net/record/303898/}{spire}) \end{itemize} further amplified in \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], section 5.1 of \emph{Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion}, Commun.Math.Phys. 219 (2001) 5-30 (\href{https://arxiv.org/abs/hep-th/0001129}{arXiv:hep-th/0001129}) \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative algebraic field theory, and deformation quantization}, in [[Roberto Longo]] (ed.), \emph{Mathematical Physics in Mathematics and Physics, Quantum and Operator Algebraic Aspects}, volume 30 of Fields Institute Communications, pages 151--160. American Mathematical Society, 2001 (\href{https://arxiv.org/abs/hep-th/0101079}{arXiv:hep-th/0101079}) \item A. C. Hirshfeld, P. Henselder, \emph{Star Products and Perturbative Quantum Field Theory}, Annals Phys. 298 (2002) 382-393 (\href{https://arxiv.org/abs/hep-th/0208194}{arXiv:hep-th/0208194}) \item [[Giovanni Collini]], \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \end{itemize} and the generalization to [[quantum field theory on curved spacetime]] is discussed in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], M. K\"o{}hler, \emph{The microlocal spectrum condition and Wick polynomials on curved spacetimes}, Commun. Math. Phys. 180, 633-652, 1996 (\href{https://arxiv.org/abs/gr-qc/9510056}{arXiv:gr-qc/9510056}) \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661, 2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{Local Wick Polynomials and Time Ordered Products of Quantum Fields in Curved Spacetime}, Commun. Math. Phys. 223:289-326, 2001 (\href{https://arxiv.org/abs/gr-qc/0103074}{arXiv:gr-qc/0103074}) \end{itemize} Review is in \begin{itemize}% \item [[Michael Dütsch]], section 2.1 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} [[!redirects Wick algebras]] [[!redirects Wick polynomial]] [[!redirects Wick polynomials]] [[!redirects normal ordering]] [[!redirects normal-ordered product]] [[!redirects normal-ordered products]] [[!redirects normal ordered product]] [[!redirects normal ordered products]] [[!redirects abstract Wick algebra]] [[!redirects abstract Wick algebras]] \end{document}