\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Wick rotation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{method}{Method}\dotfill \pageref*{method} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{Wick rotation} (after [[Gian-Carlo Wick]]) is a method in [[physics]] for finding a construction in [[relativistic field theory]] on [[Minkowski spacetime]] or, more generally, on [[Lorentzian manifolds]], from a related construction in [[Euclidean field theory]] on [[Riemannian manifolds]] in a way that involves or generalizes the idea of [[analytic continuation]] for the \emph{[[time]]} [[coordinates]]. \begin{quote}% The [[complex plane]] for a complexified [[time]] [[coordinate]] $t + i s$. After Wick rotation it is the [[imaginary part]] $s$ that replaces the ``[[real part|real]]'' time $t$. graphics grabbed from \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87} \end{quote} This is motivated by the observation that the [[Minkowski metric]] (with the $-1,1,1,1$ convention) and the four-Euclidean metric are equivalent if the [[time]] components of either are allowed to have [[imaginary part|imaginary]] values. Hence Wick rotation, when it applies, involves [[analytic continuation]] of [[n-point functions]] to [[complex number|complex valued]] [[time]] [[coordinates]]. For [[relativistic field theory|relativistic]]/[[Euclidean field theory|Euclidean]] [[quantum field theory]] on [[Minkowski spacetime]] $\mathbb{R}^{d,1}$/[[Euclidean space]] $\mathbb{R}^{d+1}$ Wick rotation is rigorously understood and takes the form of a [[theorem]] relating the [[Wightman axioms]] for [[n-point functions]] in [[relativistic field theory]] to the \emph{[[Osterwalder-Schrader axioms]]} for [[correlators]] in [[Euclidean field theory]]. See for instance \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 2} for a clear account. More generally, in this context Wick rotation applies to relativistic field theory in [[thermal equilibrium]] [[states]] at [[positive number|positive]] [[temperature]] $T$ (``[[KMS states]]''), and then relates this to [[Euclidean field theory]] with compact/periodic Euclidean time of length $\beta = 1/T$ (see \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 3}): \begin{displaymath} \itexarray{ \left. \itexarray{ \text{relativistic field theory} \\ \text{on Minkowski spacetime} \\ \mathbb{R}^{d,1} \\ \text{in a thermal equilibrium state} \\ \text{at temperature}\; T } \right\} & \;\;\;\; \overset{ \text{Wick rotation} }{\leftrightarrow} \;\;\;\; & \left\{ \itexarray{ \text{Euclidean field theory} \\ \text{on Euclidean space} \\ \mathbb{R}^d \times S^1_{\beta} \\ \text{with compact/periodic Euclidean time} \\ \text{of length} \; \beta = 1/T } \right. \\ \phantom{A} \\ \underset{ { \text{equal-time n-point function} \atop \text{of relativistic fields} } \atop \text{ in thermal equilibrium state } \; \vert T\rangle }{ \underbrace{ \left\langle T\vert :\mathbf{\Phi}(x_1,t) \mathbf{\Phi}(x_2,t) \cdots \mathbf{\Phi}(x_n,t) : \vert T \right\rangle_{\mathbb{R}^{d,1}} }} &\;=\;& \underset{ \text{correlator of Euclidean fields} \atop \text{ for "Euclidean time" of periodicity}\; \beta = 1/T }{ \underbrace{ \left\langle 0 \vert \mathbf{\Phi}(x_1,t) \mathbf{\Phi}(x_2,t) \cdots \mathbf{\Phi}(x_n,t) \vert 0 \right\rangle_{\mathbb{R}^{d} \times S^1_{\beta}} }} } \end{displaymath} In this form, Wick rotation is also known as \emph{[[thermal quantum field theory]]}. See there for more. \begin{quote}% graphics grabbed form \hyperlink{FrolovZelnikov11}{Frolov-Zelnikov 11} \end{quote} Wick rotation also applies on suitable [[black-hole]]-[[spacetimes]] spring thermodynamics, such as the [[Bekenstein-Hawking entropy]], find elegant explanations, at least at the level of the manipulation of formulas (see e.g. \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 4}). \hypertarget{example}{}\subsubsection*{{Example}}\label{example} Consider the Minkowski metric with the $-1,1,1,1$ convention for the tensor: $d s^{2}= -(d t)^{2} + (d x)^{2} + (d y)^{2} + (d z)^{2}$ and the four-dimensional Euclidean metric: $d s^{2}= d \tau^{2} + (d x)^{2} + (d y)^{2} + (d z)^{2}$. Notice that if $d t = i\cdot d \tau$, the two are equivalent. \hypertarget{method}{}\subsubsection*{{Method}}\label{method} A typical method for employing Wick rotation would be to make the substitution $t=i\tau$ in a problem in Minkowski space. The resulting problem is in Euclidean space and is sometimes easier to solve, after which a reverse substitution can (sometimes) be performed, yielding a solution to the original problem. Technically, this works for any four-vector comparison between Minkowski space and Euclidean space, not just for space-time intervals. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reflection positivity]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Wick rotation between [[relativistic field theory]] in terms of [[Wightman axioms]] for [[n-point functions]] on [[Minkowski spacetime]] and [[Euclidean field theory]] in terms of [[Osterwalder-Schrader axioms]] for [[correlators]] on [[Euclidean space]] is due to \begin{itemize}% \item [[Konrad Osterwalder]], [[Robert Schrader]], \emph{Axioms for Euclidean Green's functions}, Comm. Math. Phys. Volume 31, Number 2 (1973), 83-112 (\href{https://projecteuclid.org/euclid.cmp/1103858969}{Euclid:1103858969}) \end{itemize} The generalization of this for [[positive number|positive]] [[thermal equilibrium]] [[vacuum staes]], relating to [[thermal quantum field theory]] with compact/periodic Euclidean time is discussed in \begin{itemize}% \item Abel Klein, Lawrence Landau, \emph{Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle}, Pacific Journal of Mathematics, Vol. 94, No. 2, 1981 (\href{https://msp.org/pjm/1981/94-2/p12.xhtml}{DOI: 10.2140/pjm.1981.94.341}, \href{https://msp.org/pjm/1981/94-2/pjm-v94-n2-p12-s.pdf}{pdf}) \end{itemize} The idea here apparently goes back to \begin{itemize}% \item Claude Bloch, \emph{Sur la détermination de l'état fondamental d'un système de particules}, Nucl. Phys. 7 (1958) 451 \end{itemize} This has maybe first been made precise, for the case of 1+1 dimensions, in \begin{itemize}% \item [[Raphael Høegh-Krohn]], \emph{Relativistic Quantum Statistical Mechanics in two-dimensional Space-Time}, Communications in Mathematical Physics 38.3 (1974): 195-224 (\href{https://www.duo.uio.no/bitstream/handle/10852/44072/1973-22.pdf}{pdf}) \end{itemize} Good review on the relation to [[thermal quantum field theory]] and [[black hole thermodynamics]] is in \begin{itemize}% \item S.A. Fulling, S.N.M. Ruijsenaars, \emph{Temperature, periodicity and horizons}, Physics Reports Volume 152, Issue 3, August 1987, Pages 135-176 (\href{https://www1.maths.leeds.ac.uk/~siru/papers/p26.pdf}{pdf}, ) \item [[Gary Gibbons]], Malcolm J. Perry, \emph{Black Holes and Thermal Green Functions}, Vol. 358, No. 1695 (1978) (\href{https://www.jstor.org/stable/79482}{jstor:79482}) \end{itemize} Discussion of thermal Wick rotation on global [[anti-de Sitter spacetime]] (which is already periodic in \emph{real} time) is in \begin{itemize}% \item B. Allen, A. Folacci, [[Gary Gibbons]], \emph{Anti-de Sitter space at finite temperature}, Physics Letters B Volume 189, Issue 3, 7 May 1987, Pages 304-310 () \end{itemize} See also \begin{itemize}% \item Dirk Schlingemann, \emph{From euclidean field theory to quantum field theory} (\href{http://arxiv.org/abs/hep-th/9802035}{arXiv:hep-th/9802035}) \item [[Graeme Segal]], \emph{Wick rotation and the positivity of energy in quantum field theory} (\href{https://www.youtube.com/watch?feature=player_embedded&v=vTvXHL6ZJik}{video}) \item [[Edward Witten]], \emph{The Feynman $i \epsilon$ in String Theory} (\href{http://arxiv.org/abs/1307.5124}{arXiv:1307.5124}) \end{itemize} \end{document}