\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Wightman axioms} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{wightman_axioms}{Wightman Axioms}\dotfill \pageref*{wightman_axioms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_wightman_reconstruction_theorem}{The Wightman Reconstruction Theorem}\dotfill \pageref*{the_wightman_reconstruction_theorem} \linebreak \noindent\hyperlink{equivalence_to_euclidean_field_theory}{Equivalence to Euclidean Field Theory}\dotfill \pageref*{equivalence_to_euclidean_field_theory} \linebreak \noindent\hyperlink{equivalence_to_the_haagkastler_axioms}{Equivalence to the Haag--Kastler Axioms}\dotfill \pageref*{equivalence_to_the_haagkastler_axioms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{neutral_real_uncharged_scalar_field}{Neutral Real (uncharged) Scalar Field}\dotfill \pageref*{neutral_real_uncharged_scalar_field} \linebreak \noindent\hyperlink{further_examples}{Further examples}\dotfill \pageref*{further_examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Wightman axioms} are an attempt to [[axiom|axiomatize]] and thus formalize the notion of a [[quantum field theory]] on [[Minkowski spacetime]] ([[relativistic quantum field theory]]) in the sense of [[AQFT]], i.e. in terms of the assignment of field [[quantum observables]] to points or subsets of [[spacetime]] ([[operator-valued distributions]]). They serve as the basis of what is known as \textbf{constructive quantum field theory} which seeks to provide a mathematically sound framework for quantum theory over the Minkowski space background of [[special relativity]]. [[Arthur Wightman]] first formulated them in the 1950s but they were not published until 1964 after advances in scattering theory confirmed their applicability. The Wightman axioms served to establish rigorously several basic structural properties of quantum field theories on Minkowski spacetime, such as the [[spin-statistics theorem]] or the [[Osterwalder–Schrader theorem]] relating Lorenzian and Euclidean quantum field theories (``Wick rotation''). They were later further abstracted to the [[Haag-Kastler axioms]] that characterize [[local net]]s of operator algebras and serve as the basis for [[AQFT|algebraic quantum field theory]]. See there for further details. This page is a draft, see: \begin{itemize}% \item Wikipedia on the \href{http://en.wikipedia.org/wiki/Wightman_axioms}{Wightman axioms} \end{itemize} \hypertarget{wightman_axioms}{}\subsection*{{Wightman Axioms}}\label{wightman_axioms} Note: the numbering - and indeed the actual number - of axioms varies depending on the source. In many sources, several of the axioms below are combined. \begin{defn} \label{}\hypertarget{}{} There is a physical Hilbert space $\mathcal{H}$ in which a unitary representation $U(a,\Lambda)$ of the [[Poincaré spinor group]], $P_{0}$ acts. \end{defn} \begin{defn} \label{}\hypertarget{}{} The spectrum of the energy-momentum operator P is concentrated in the closed upper (forward) light cone $V^{+}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} There exists in $\mathcal{H}$ a unique unit vector $|0\rangle$ (the \emph{[[vacuum state]]}), which is invariant with respect to the space-time translations $U(a,1)$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The components $\phi_{i}$ of the quantum field $\phi$ are [[operator-valued distributions]] $\phi_{i}(x)$ over the [[Schwartz space]] $S(M)$ ([[tempered distributions]]) with domain of definition $D$ which is common to all the operators and is dense in $\mathcal{H}$. $|0\rangle$ is contained in $D$ and $D$ is taken into itself under the action of $\phi (f)$ and $U(a,\Lambda)$. \end{defn} Note: As in distribution theory it is custom to abuse the notation and write $\phi (x)$ for a point $x$ of the Minkowski spacetime and talk about the function $\phi$, rather than the value of the distribution $\phi(f)$ of a test function $f$. \begin{defn} \label{}\hypertarget{}{} $U(a,\Lambda)\phi_{i}(x)U(a,\Lambda)^{-1}=\sum_{j}V_{ij}(\Lambda^{-1})\phi_{j}(\Lambda x + a)$ where $V_{ij}(\Lambda)$ is a complex or real finite-dimensional matrix representation of $SL(2,C)$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Any two field components $\phi_{i}(x)$ and $\phi_{j}(y)$ either commute or anticommute under a space-like separation of the arguments $x$ and $y$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The set $D_{0}$ of finite linear combinations of vectors of the form $\phi_{i_1}(f_{1})\ldots\phi_{i_n}(f_{n})|0\rangle$ is dense in $\mathcal{H}$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_wightman_reconstruction_theorem}{}\subsubsection*{{The Wightman Reconstruction Theorem}}\label{the_wightman_reconstruction_theorem} The \textbf{[[vacuum expectation values]]} ([[n-point functions]]) of the theory are all (tempered, by the axioms) distributions of the form \begin{displaymath} \langle0| \phi_{i_1}(f_{1})\ldots\phi_{i_n}(f_{n})|0\rangle \end{displaymath} The term ``distribution'' is used interchangably with ``function'' and ``value'' in the physics literature. The Wightman reconstruction theorem states properties that a set of tempered distributions $\{\mathcal{W}^n | n \in \N \}$ need to have to be the set of vacuum expectation values of a Wightman theory, and all such Wightman theories are then unitarily equivalent. \ldots{}to be continued\ldots{} \hypertarget{equivalence_to_euclidean_field_theory}{}\subsubsection*{{Equivalence to Euclidean Field Theory}}\label{equivalence_to_euclidean_field_theory} See [[Osterwalder–Schrader theorem]] \hypertarget{equivalence_to_the_haagkastler_axioms}{}\subsubsection*{{Equivalence to the Haag--Kastler Axioms}}\label{equivalence_to_the_haagkastler_axioms} See [[Haag–Kastler axioms]]. Since both the Wightman and the Haag-Kastler approach try to formulate an axiomatic approach to quantum field theory on Minkowski spacetime, the natural question to ask is what is their relationship? Three possible answers come to mind: \begin{itemize}% \item They are equivalent. \item One contains the other, i.e. one set of axioms implies the other. \item At least one is wrong (from the physical viewpoint). \end{itemize} Unfortunatly the situation does not seem to be as clear as this list suggests. The current state of the affair seems to be that \begin{itemize}% \item ``the Haag-Kastler approach is more convenient, because it deals with algebras of bounded operators, while Wightman fields are allowed to generate unbounded operators'' \end{itemize} and \begin{itemize}% \item ``a Wightman field theory is equivalent to a Haag-Kastler theory, if some mild additional assumptions are made''. \end{itemize} Reference: \begin{itemize}% \item H.J. Borchers, Jakob Yngvason: ``From quantum fields to local von Neumann algebras'', Rev.Math.Phys. Special issue, 1992, p.15-47. \end{itemize} [[Tim van Beek]]: The two statemants above are a condensate of diverse papers I read, any input about the true state of the art would be most welcome. My educated guess is that the ``mildness'' of the assumptions indicates the fact that all physically realistic models are supposed to satisfy these. Should it be bounded or unbounded operators/observables? \begin{itemize}% \item Pro: Some observables do not have an upper bound, e.g. you can always increase the impulse of an electron, no matter how big that already is (in theory). \item Contra: A detector has an upper bound for every observable it can detect, and that is what is actually measured in an experiment. The situation of the pro-bullet won't arise because we measure observables in bounded regions of spacetime, and the energy contained in a bounded region is always finite (we are excluding artifacts like black holes from our consideration, of course). \item Contra to even asking the question: Theories of bounded and unbounded operators/observables are physically equivalent modulo mathematical subtleties, meaning they produce the same numbers that can be compared to experiments. \end{itemize} One simple situation where the construction of a Haag-Kastler net out of Wightman fields is straight forward is this: Suppose that all smeared field operators of the Wightman theory are essentially self adjoint for real test functions and commute strongly (their spectral projections commute) if the test functions have space-like separated support. Then we can define local algebras by $\mathcal{M}(\mathcal{O}) := \{F(\Psi(f)) | f$ is a real test function with support contained in $\mathcal{O}$ and F is a bounded Borel measurable function on $\R \}$. (Our assumptions allow us to use the \href{http://en.wikipedia.org/wiki/Borel_functional_calculus}{Borel functional calculus}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{neutral_real_uncharged_scalar_field}{}\subsubsection*{{Neutral Real (uncharged) Scalar Field}}\label{neutral_real_uncharged_scalar_field} A neutral real quantum scalar field on Minkowski spacetime $M$ with mass parameter $m \gt 0$ can be defined as follows: \begin{udef} The \textbf{positive mass shell} is the subset of Minkowski spacetime defined by \begin{displaymath} X^+_m := \{p | p^2 = m^2, \; p_0 \gt 0 \} \end{displaymath} The \textbf{normalized Lorentz-invariant measure} on the positive mass shell is defined with respect to the Lesbegue measure by \begin{displaymath} d\lambda(p) = d\lambda(\omega_p, \vec p) = \frac{d^3 \vec p}{(2\pi)^3 \omega_p} \; \text{with} \; \omega_p = p^0 = \sqrt{|\vec p|^2 + m^2} \end{displaymath} \end{udef} Let $H = L^2(X^+_m, \lambda)$ be the Hilbert space with $X^+_m$ the positive mass shell and $\lambda$ the normalized Lorentz-invariant measure on it as defined above. Construct the Boson [[Fock space]] $F_s(H)$. Define the operator $R$ to be the Lorentz invariant Fourier transform restricted to $X^+_m$: \begin{displaymath} R: \mathcal{S}(\mathbb{R}^4) \to H \end{displaymath} \begin{displaymath} R(f) := \hat f |_{X^+_m} \; \text{with} \; \hat f := \mathcal{F}(f) = \int_M e^{i p_{\mu} x^{\mu}} f(x) dx \end{displaymath} The quantum field $\Psi$ is now a real tempered distribution on $M$ with values in the space of operators of $F_s(H)$. \begin{displaymath} \Psi: \mathcal{S}(M) \to \mathcal{B}(F_s(H)) \end{displaymath} \begin{displaymath} f \mapsto \Psi(f) = \frac{1}{\sqrt(2)} (a(Rf) + a^*(Rf)) \end{displaymath} $a$ and $a^*$ are the annihilation and creation operators on $F_s(H)$, that is $a(v)$ anihilates a single particle state $v$ and $a^*(v)$ creates a single particle state $v$. $\Psi$ is a distribution solution of the [[Klein-Gordon equation]] by construction, that is for every test function $f$ we get \begin{displaymath} \Psi((\Box + m^2) f) = 0 \end{displaymath} The reason for this is that \begin{displaymath} \mathcal{F}{[(\Box + m^2) f]} = (-p^2 + m^2) f = 0 \; \text{on} \; X^+_m \end{displaymath} \hypertarget{further_examples}{}\subsubsection*{{Further examples}}\label{further_examples} The Wightman axioms have been established for the following theories. \begin{itemize}% \item Massive 2d scalar theories with polynomial interactions, see \href{http://www.jstor.org/stable/1970959}{this article} by Glimm, Jaffe and Spencer. \item Massive $\phi^4$ in 3d, see \href{http://www.sciencedirect.com/science/article/pii/0003491676902232}{this article} by Feldman and Osterwalder as well as this one by Magnen and Seneor. \item Massive Gross-Neveu in 2d see \href{http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104114300}{this article} by Gawedzki and Kupiainen and \href{http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104114625}{this one} by Feldman, Magnen, Rivasseau and Seneor. \item Massive Thirring model, see \href{http://dx.doi.org/10.5169/seals-114796}{this article} by Frohlich and Seiler and this more recent one by Benfatto, Falco and Mastropietro. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[AQFT]], [[local net]] \item [[conformal net]], [[conformal bootstrap]] \item analog for [[Euclidean field theory]]: [[Osterwalder-Schrader axioms]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original texts are \begin{itemize}% \item A. S. Wightman, L. Gårding, \emph{Fields as Operator-valued Distributions in Relativistic Quantum Theory}, Arkiv f. Fysik, Kungl. Svenska Vetenskapsak. 28, 129–189 (1964). \item Raymond F. Streater, [[Arthur Wightman]], \emph{PCT, spin and statistics, and all that}, Princeton University Press 1989 (\href{https://www.jstor.org/stable/j.ctt1cx3vcq}{jstor}, \href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1026.81027&format=complete}{ZMATH} of the newest edition). \end{itemize} Raymond Streater relates some historical background about the book and the approach \href{http://www.mth.kcl.ac.uk/~streater/wightman.html}{on his webpage}. A review of [[QFT]] via Wightman axioms and [[AQFT]] is in \begin{itemize}% \item [[Franco Strocchi]], \emph{Relativistic Quantum Mechanics and Field Theory}, Found.Phys. 34 (2004) 501-527 (\href{http://arxiv.org/abs/hep-th/0401143}{arXiv:hep-th/0401143}) \end{itemize} The list of examples above draws from \begin{itemize}% \item Abdesselam, \emph{\href{http://theoreticalphysics.stackexchange.com/questions/308/which-qfts-were-rigorously-constructed/350#350}{TP.SE comment}} \end{itemize} Discussion of the axioms for $\phi^4$-theory in 3d is in \begin{itemize}% \item Joel Feldman, [[Konrad Osterwalder]], \emph{The Wightman axioms and the mass gap for weakly coupled $phi_3^4$ quantum field theories}, Ann. Physics 97 (1976), 80--135 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Wightman_axioms}{Wightman axioms}} \end{itemize} [[!redirects Wightman theory]] [[!redirects Wightman approach]] \end{document}