\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Wilson loop} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_1d_chernsimons_theory}{Relation to 1d Chern-Simons theory}\dotfill \pageref*{relation_to_1d_chernsimons_theory} \linebreak \noindent\hyperlink{relation_to_defects}{Relation to defects}\dotfill \pageref*{relation_to_defects} \linebreak \noindent\hyperlink{duality_with_t_hooft_operators_under_sduality_and_geometric_langlands}{Duality with `t Hooft operators under S-duality and geometric Langlands}\dotfill \pageref*{duality_with_t_hooft_operators_under_sduality_and_geometric_langlands} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_chernsimons_theory}{In Chern-Simons theory}\dotfill \pageref*{in_chernsimons_theory} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_chernsimons_theory_2}{In Chern-Simons theory}\dotfill \pageref*{in_chernsimons_theory_2} \linebreak \noindent\hyperlink{in_qft_with_defects}{In QFT with defects}\dotfill \pageref*{in_qft_with_defects} \linebreak \noindent\hyperlink{as_partition_functions_of_1d_chernsimons_theory}{As partition functions of 1d Chern-Simons theory}\dotfill \pageref*{as_partition_functions_of_1d_chernsimons_theory} \linebreak \noindent\hyperlink{in_sduality_and_relation_to_t_hoofts_operators}{In S-duality and relation to t Hoofts operators}\dotfill \pageref*{in_sduality_and_relation_to_t_hoofts_operators} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Wilson loop} or \emph{Wilson line} is an [[observable]] in (both classical and quantum) [[gauge theory]] obtained from the [[holonomy]] of the [[gauge field|gauge]] [[connection on a bundle|connection]]. Hence if the gauge connection is given by a globally defined 1-form $A$, then the \textbf{Wilson loop} along a closed [[loop]] $C$ is the trace of the [[path-ordered exponential]] \begin{displaymath} W_C = Tr(\mathcal{P}exp(i\oint_C A_\mu d x^\mu)) \end{displaymath} where $\mathcal{P}$ is the ``path-ordering operator'' and $A_\mu$ are the components of the connection. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_1d_chernsimons_theory}{}\subsubsection*{{Relation to 1d Chern-Simons theory}}\label{relation_to_1d_chernsimons_theory} For $G$ a suitable [[Lie group]] (compact, semi-simple and simply connected) the Wilson loops of $G$-[[principal connections]] are equivalently the [[partition functions]] of a [[1-dimensional Chern-Simons theory]]. This appears famously in the formulation of [[Chern-Simons theory]] \href{Chern-Simons+theory#WithWilsonLineObservables}{with Wilson lines}. More detailes are at \emph{[[orbit method]]}. \hypertarget{relation_to_defects}{}\subsubsection*{{Relation to defects}}\label{relation_to_defects} Wilson loop insertions may be thought of or at least related to \emph{defects} in the sense of \emph{[[QFT with defects]]}. \hypertarget{duality_with_t_hooft_operators_under_sduality_and_geometric_langlands}{}\subsubsection*{{Duality with `t Hooft operators under S-duality and geometric Langlands}}\label{duality_with_t_hooft_operators_under_sduality_and_geometric_langlands} [[S-duality]] of 4d [[super Yang-Mills theory]] may exchange Wilson loop operators with [[`t Hooft operators]], in an incarnation of the [[geometric Langlands correspondence]] (\hyperlink{KapustinWitten06}{Kapustin-Witten 06}) [[!include geometric Langlands QFT -- table]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_chernsimons_theory}{}\subsubsection*{{In Chern-Simons theory}}\label{in_chernsimons_theory} In $SU(2)$-[[Chern-Simons theory]] the Wilson line observables compute the [[Jones polynomial]] of the given curve. See there for more details. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[`t Hooft operator]] \item [[Wilson surface]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item Kenneth Wilson, \emph{Confinement of quarks}, Physical Review \textbf{D 10} (8): 2445. \href{http://dx.doi.org/10.1103/PhysRevD.10.2445}{doi} (1974) \item Yuri Makeenko, \emph{Methods of contemporary gauge theory}, Cambridge Monographs on Math. Physics, \href{http://books.google.com/books?id=9W-W2w75ulAC}{gBooks} \item wikipedia \href{http://en.wikipedia.org/wiki/Wilson_loop}{Wilson loop} \item R. Giles, \emph{Reconstruction of gauge potentials from Wilson loops}, Physical Review \textbf{D 24} (8): 2160, \href{http://dx.doi.org/10.1103/PhysRevD.24.2160}{doi} \item A. Andrasi, J. C. Taylor, \emph{Renormalization of Wilson operators in Minkowski space}, Nucl. Phys. B516 (1998) 417, \href{http://arxiv.org/abs/hep-th/9601122}{hep-th/9601122} \item Amit Sever, Pedro Vieira, Luis F. Alday, Juan Maldacena, [[Davide Gaiotto]], \emph{An Operator product expansion for polygonal null Wilson loops}, \href{http://arxiv.org/abs/1006.2788}{arxiv.org/abs/1006.2788} \end{itemize} \hypertarget{in_chernsimons_theory_2}{}\subsubsection*{{In Chern-Simons theory}}\label{in_chernsimons_theory_2} The [[Poisson bracket]] of Wilson line observables in [[3d Chern-Simons theory]] was obtained in \begin{itemize}% \item W. Goldman, \emph{Invariant functions on Lie groups and Hamiltonian flow of surface group representations}, Inventiones Math., 85 (1986), 263--302. \end{itemize} For more see \begin{itemize}% \item [[Razvan Gelca]], [[Alejandro Uribe]], section 4 of \emph{Quantum mechanics and non-abelian theta functions for the gauge group $SU(2)$} (\href{http://arxiv.org/abs/1007.2010}{arXiv:1007.2010}) \end{itemize} \hypertarget{in_qft_with_defects}{}\subsubsection*{{In QFT with defects}}\label{in_qft_with_defects} Relation to [[QFT with defects]] is discussed in slide 17 of \begin{itemize}% \item [[Constantin Bachas]], \emph{Conformal defects in/and String theory} (\href{http://www.ggi.fi.infn.it/talks/talk106.pdf}{pdf}) \end{itemize} slide 5 of \begin{itemize}% \item [[Constantin Bachas]], \emph{Conformal defects in gauged WZW models} (\href{http://hep.physics.uoc.gr/conf09/TALKS/Bachas.pdf}{pdf}) \end{itemize} \hypertarget{as_partition_functions_of_1d_chernsimons_theory}{}\subsubsection*{{As partition functions of 1d Chern-Simons theory}}\label{as_partition_functions_of_1d_chernsimons_theory} Expression of Wilson loops as [[partition functions]] of [[1-dimensional Chern-Simons theories]] by the [[orbit method]] (as used notably in [[Chern-Simons theory]]) is in section 4 of \begin{itemize}% \item [[Chris Beasley]], \emph{Localization for Wilson Loops in Chern-Simons Theory}, in J. Andersen, H. Boden, A. Hahn, and B. Himpel (eds.) \emph{Chern-Simons Gauge Theory: 20 Years After}, AMS/IP Studies in Adv. Math., Vol. 50, AMS, Providence, RI, 2011. (\href{http://arxiv.org/abs/0911.2687}{arXiv:0911.2687}) \end{itemize} referring to \begin{itemize}% \item S. Elitzur, [[Greg Moore]], A. Schwimmer, and [[Nathan Seiberg]], \emph{Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory}, Nucl. Phys. B 326 (1989) 108--134. \end{itemize} in the context of [[Chern-Simons theory]] and in more general gauge theory to \begin{itemize}% \item A. P. Balachandran, S. Borchardt, and A. Stern, \emph{Lagrangian And Hamiltonian Descriptions of Yang-Mills Particles}, Phys. Rev. D 17 (1978) 3247--3256 \end{itemize} \hypertarget{in_sduality_and_relation_to_t_hoofts_operators}{}\subsubsection*{{In S-duality and relation to t Hoofts operators}}\label{in_sduality_and_relation_to_t_hoofts_operators} \begin{itemize}% \item [[Anton Kapustin]], [[Edward Witten]], \emph{Electric-Magnetic Duality And The Geometric Langlands Program}, Communications in Number Theory and Physics Volume 1 (2007) Number 1 (\href{http://arxiv.org/abs/hep-th/0604151}{arXiv:hep-th/0604151}) \end{itemize} [[!redirects Wilson loop]] [[!redirects Wilson loops]] [[!redirects Wilson-loop]] [[!redirects Wilson-loops]] [[!redirects Wilson line]] [[!redirects Wilson-line]] [[!redirects Wilson lines]] [[!redirects Wilson-lines]] [[!redirects Wilson operator]] [[!redirects Wilson operators]] \end{document}