\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Wirthmüller context} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{TheComparisonMaps}{The comparison maps}\dotfill \pageref*{TheComparisonMaps} \linebreak \noindent\hyperlink{ComparisonOfPushForwardsAndWirthmuelleriso}{Comparison of push-forwards and Wirthm\"u{}ller isomorphism}\dotfill \pageref*{ComparisonOfPushForwardsAndWirthmuelleriso} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{CartesianWirthmuellerContexts}{Cartesian Wirthm\"u{}ller contexts in toposes}\dotfill \pageref*{CartesianWirthmuellerContexts} \linebreak \noindent\hyperlink{PointedObjects}{Pointed objects with smash product}\dotfill \pageref*{PointedObjects} \linebreak \noindent\hyperlink{bundles_of_modules}{Bundles of modules}\dotfill \pageref*{bundles_of_modules} \linebreak \noindent\hyperlink{bundles_of_modules_2}{Bundles of $\infty$-modules}\dotfill \pageref*{bundles_of_modules_2} \linebreak \noindent\hyperlink{beckergottlieb_transfer}{Becker-Gottlieb transfer}\dotfill \pageref*{beckergottlieb_transfer} \linebreak \noindent\hyperlink{in_equivariant_stable_homotopy_theory}{In equivariant stable homotopy theory}\dotfill \pageref*{in_equivariant_stable_homotopy_theory} \linebreak \noindent\hyperlink{ForQuasicoherentSheaves}{For quasicoherent sheaves (in $E_\infty$-geometry)}\dotfill \pageref*{ForQuasicoherentSheaves} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Wirthm\"u{}ller context} is a pair of two [[symmetric monoidal category|symmetric]] [[closed monoidal categories]] $(\mathcal{X}, \otimes_X, 1_{X})$, $(\mathcal{Y}, \otimes_Y, 1_Y)$ which are connected by an [[adjoint triple]] of [[functors]] such that the middle one is a [[closed monoidal functor]]. This is the variant/special case of the [[yoga of six operations]] consisting of two [[adjoint pairs]] $(f_! \dashv f^!)$ and $(f^\ast \dashv f_\ast)$ and the [[tensor product]]/[[internal hom]] [[adjunctions]] $((-)\otimes B \dashv [B,-])$, specialized to the case that $f^! \simeq f^\ast$: \begin{displaymath} f_! \dashv (f^! = f^\ast) \dashv f_\ast \;\colon\; \mathcal{X} \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^! = f^\ast }{\leftarrow}}{\underset{f_\ast}{\longrightarrow}}} \mathcal{Y} \,. \end{displaymath} (The other specialization of the [[six operations]] to $f_\ast \simeq f_!$ is called the \emph{[[Grothendieck context]]}). Often one is interested in the case that there is an [[object]] $C \in \mathcal{X}$ and an [[equivalence]] \begin{displaymath} f_\ast 1_{X} \simeq f_! C \,. \end{displaymath} If this induces a [[natural equivalence]] \begin{displaymath} f_\ast A \simeq f_!(A \otimes_X C) \end{displaymath} for $A \in \mathcal{X}$, then one says this is a \emph{Wirthm\"u{}ller isomorphism}, following (\hyperlink{Wirthmueller74}{Wirthmueller 74}). In particular there is a canonical [[natural transformation]] \begin{displaymath} f_\ast A \longrightarrow f_!(A \otimes_X C) \end{displaymath} and one can ask this to be an equivalence, hence a Wirthm\"u{}ller isomorphism (\hyperlink{May05}{May 05}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{WirthmullerContext}\hypertarget{WirthmullerContext}{} Let $(\mathcal{X}, \otimes_X, 1_{X})$, $(\mathcal{Y}, \otimes_Y, 1_Y)$ be two [[symmetric monoidal category|symmetric]] [[closed monoidal categories]] and let \begin{displaymath} f_! \dashv (f^! = f^\ast) \dashv f_\ast \;\colon\; \mathcal{X} \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^! = f^\ast }{\leftarrow}}{\underset{f_\ast}{\longrightarrow}}} \mathcal{Y} \end{displaymath} be an [[adjoint triple]] of [[functors]] between them. We call this setup \begin{itemize}% \item a \emph{pre-Wirthm\"u{}ller context} if $f^\ast$ is a [[strong monoidal functor]]: \item a \emph{Wirthm\"u{}ller context} if $f^\ast$ is in addition a [[strong closed functor]], hence a strongly [[closed monoidal functor]]. \end{itemize} \end{defn} (\hyperlink{May05}{May 05, def. 2.12}) \begin{defn} \label{}\hypertarget{}{} We write $[-,-]$ for the [[internal hom]] functors. For $A \in \mathcal{X}$ we write \begin{displaymath} \mathbb{D}A \coloneqq [A,1_X] \end{displaymath} for the [[internal hom]] from $A$ into the [[unit object]], hence for dual of $A$ with respect to the [[closed category]] structure, its [[dual object in a closed category]]. We say ``$A$ is dualizable'' to mean that it is a [[dualizable object]] with respect, insead, to the (symmetric) [[monoidal category]] structure $\otimes_X$. If $A$ is dualizable we write $A^\vee$ for its monoidal [[dual object]]. Similarly for $B \in \mathcal{Y}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} If all objects in $\mathcal{X}$ and $\mathcal{Y}$ are [[dualizable object|dualizable]], hence if they are [[compact closed categories]], then they are in particular also [[star-autonomous categories]] with [[dualizing object]] the [[tensor unit]]. As such their [[internal logic]] is \emph{[[linear logic]]} and their [[type theory]] is \emph{[[linear type theory]]}. In terms of this a Wirthm\"u{}ller morphism, def. \ref{WirthmullerContext}, is the linear analog of a [[context extension]] morphism in a [[hyperdoctrine]]: it defines a \emph{[[dependent linear type theory]]}. See there for more. \end{remark} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{TheComparisonMaps}{}\subsubsection*{{The comparison maps}}\label{TheComparisonMaps} \begin{remark} \label{QuasiMonoidalnessOfLeftAdjoint}\hypertarget{QuasiMonoidalnessOfLeftAdjoint}{} In a pre-Wirthm\"u{}ller context, def. \ref{WirthmullerContext}, there is a canonical [[natural transformation]] \begin{displaymath} f_!(A \otimes_X B) \longrightarrow (f_! A) \otimes_Y (f_! B) \,, \end{displaymath} (not necessarily an [[equivalence]]) being the [[adjunct]] of the composite \begin{displaymath} A \otimes_X B \stackrel{}{\longrightarrow} (f^\ast f_! A) \otimes_X (f^\ast f_! B) \stackrel{\simeq}{\longrightarrow} f^\ast ( (f_! A) \otimes_Y (f_! B) ) \,, \end{displaymath} where the first morphism is the [[tensor product]] of two copies of the [[unit of an adjunction|adjunction unit]] and where the second is the [[equivalence]] that exhibits $f^\ast$ as a [[strong monoidal functor]]. \end{remark} \begin{defn} \label{ComparisonMaps}\hypertarget{ComparisonMaps}{} In a pre-Wirthm\"u{}ller context, def. \ref{WirthmullerContext}, write $\overline {\pi}$ for the [[natural transformation]] \begin{displaymath} \overline{\pi} \;\colon\; f_! ((f^\ast B) \otimes A) \longrightarrow B \otimes f_! A \end{displaymath} given as the composite \begin{displaymath} \overline{\pi} \;\colon\; f_! ((f^\ast B) \otimes A) \stackrel{}{\longrightarrow} (f_! f^\ast B) \otimes_Y (f_! A) \longrightarrow B \otimes f_! A \,, \end{displaymath} where the first morphism is that of remark \ref{QuasiMonoidalnessOfLeftAdjoint} and where the second is the $(f_! \dashv f^\ast)$ [[counit of an adjunction|counit]] (tensored with an identity). Also write \begin{displaymath} \overline{\gamma} \;\colon\; [f_! A, B] \longrightarrow f_\ast [A, f^\ast B] \end{displaymath} for the $(f^\ast \dashv f_\ast)$ [[adjunct]] of the [[natural transformation]] given as the composite \begin{displaymath} f^\ast [f_! A, B] \stackrel{\simeq}{\longrightarrow} [f^\ast f_! A, \, f^\ast B] \longrightarrow [A, f^\ast B] \,, \end{displaymath} where the first map exhibits $f^\ast$ as a [[closed monoidal functor]] and where the second is the $(f_! \dashv f^\ast)$-[[unit of an adjunction|unit]] (under the [[internal hom]]). \end{defn} see (\hyperlink{May05}{May 05, prop. 2.11}) \begin{prop} \label{ComparisonIsEquivalenceOnDualizables}\hypertarget{ComparisonIsEquivalenceOnDualizables}{} In a pre-Wirthm\"u{}ller context, def. \ref{WirthmullerContext}, the comparison maps of def. \ref{ComparisonMaps} are [[equivalences]] when the argument $B \in (\mathcal{Y}, \otimes_Y, 1_Y)$ is a [[dualizable object]]. If either of the two happens to be a [[natural equivalence]] (hence an equivalence for all arguments), then so is the other. \end{prop} (\hyperlink{May05}{May 05, prop. 2.8 and prop. 2.11}) \begin{prop} \label{InWirthmuellerContextProjectionIsEquivalence}\hypertarget{InWirthmuellerContextProjectionIsEquivalence}{} Precisely if the pre-Wirthm\"u{}ller context is a Wirthm\"u{}ller context, def. \ref{WirthmullerContext}, are both comparison maps of def. \ref{ComparisonMaps} are natural equivalences. \end{prop} \begin{proof} For all $A \in \mathcal{X}$ and $B,C \in \mathcal{Y}$ we have by the $(f_! \dashv f^\ast)$-[[adjunction]] and the tensor$\dashv$hom-adjunction a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ \mathcal{Y}(B \otimes f_! A, \, C ) & \stackrel{ \mathcal{Y}(\overline{\pi}(A,B), C) }{ \longrightarrow } & \mathcal{Y}(f_! ((f^\ast B) \otimes A),\, C) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \mathcal{X}(A, f^\ast [B,C]) &\stackrel{}{\longrightarrow}& \mathcal{X}(A, [(f^\ast B), (f^\ast C)]) } \,. \end{displaymath} By naturality in $A$ and by the [[Yoneda lemma]] this shows that $\overline{\pi}$ is an equivalence precisey if $f^\ast$ is strong closed. For $\overline{\gamma}$ the same statement follows from this with prop. \ref{ComparisonIsEquivalenceOnDualizables}. \end{proof} \begin{remark} \label{}\hypertarget{}{} The first [[natural equivalence]] of prop. \ref{InWirthmuellerContextProjectionIsEquivalence} \begin{displaymath} f_!(f^\ast A \otimes B) \simeq A \otimes f_!(B) \end{displaymath} is often called the \emph{[[projection formula]]}. In [[representation theory]] this is also sometimes called \emph{[[Frobenius reciprocity]]}, though mostly that term is used for (just) the existence of the $(f_! \dashv f^\ast)$-[[adjunction]], where in representation theory the [[left adjoint]] $f_!$ forms [[induced representations]]. \end{remark} \hypertarget{ComparisonOfPushForwardsAndWirthmuelleriso}{}\subsubsection*{{Comparison of push-forwards and Wirthm\"u{}ller isomorphism}}\label{ComparisonOfPushForwardsAndWirthmuelleriso} \begin{cor} \label{PushforwardsIntertwinedByDuality}\hypertarget{PushforwardsIntertwinedByDuality}{} In a pre-Wirthm\"u{}ller context, def. \ref{WirthmullerContext}, the functors $f_!$ and $f_\ast$ are intertwined by dualization, in that there is a [[natural equivalence]] \begin{displaymath} \mathbb{D}(f_! A) \simeq f_\ast(\mathbb{D} A) \,. \end{displaymath} \end{cor} \begin{proof} This is the special case of the property of $\overline{\gamma}$ in prop. \ref{ComparisonIsEquivalenceOnDualizables} for $B = 1_Y$: \begin{displaymath} \mathbb{D}(f_! A) = [f_! A, 1_Y] \underoverset{\simeq}{\overline{\gamma}}{\longrightarrow} f_\ast [A, f^\ast 1_Y] \simeq f_\ast [A, 1_Y] = f_\ast \mathbb{D} A \,. \end{displaymath} \end{proof} \begin{remark} \label{LinearDeMorganDualityForPushForwards}\hypertarget{LinearDeMorganDualityForPushForwards}{} With a Wirthm\"u{}ller context regarded as [[categorical semantics]] for [[dependent linear type theory]] (see there), then the statement of cor. \ref{PushforwardsIntertwinedByDuality} is an instance of [[de Morgan duality]] where linear [[dual object|dualization]] intertwines linear [[dependent sum]] $\sum$ and [[dependent product]] $\prod$ \begin{displaymath} \prod_f \mathbb{D} \simeq \mathbb{D} \sum_f \,. \end{displaymath} For more on this see also ([[schreiber:Quantization via Linear homotopy types|Schreiber 14, section 3.3]]). \end{remark} \begin{example} \label{}\hypertarget{}{} In a pre-Wirthm\"u{}ller context \begin{displaymath} f_\ast 1_X \simeq \mathbb{D}(f_! 1_X) \,. \end{displaymath} \end{example} \begin{proof} By cor. \ref{PushforwardsIntertwinedByDuality}, since $\mathbb{D} 1_X \simeq 1_X$. \end{proof} \begin{prop} \label{AbstractWirthmuellerIso}\hypertarget{AbstractWirthmuellerIso}{} \textbf{(Wirthm\"u{}ller isomorphism)} In a Wirthm\"u{}ller context, def. \ref{WirthmullerContext} if $f_! 1_X$ is a [[dualizable object]] with dual $f_! C$, then there is a [[natural equivalence]] \begin{displaymath} \omega \;\colon\; f_\ast f^\ast A \stackrel{\simeq}{\longrightarrow} f_!((f^\ast A) \otimes C) \,. \end{displaymath} \end{prop} (\hyperlink{May05}{May 05, prop. 4.13}). \begin{remark} \label{MonadCommutesWithDualityUpTotwist}\hypertarget{MonadCommutesWithDualityUpTotwist}{} In particular if there is $D \in \mathcal{Y}$ with \begin{displaymath} \mathbb{D}(f_! f^\ast 1_Y) \simeq f_! f^\ast D \end{displaymath} (hence if $C \simeq f^\ast D$ in the notation of prop. \ref{AbstractWirthmuellerIso}) and using that by cor. \ref{PushforwardsIntertwinedByDuality}, $f_\ast f^\ast \mathbb{D}B \simeq f_\ast \mathbb{D} f^\ast B \simeq \mathbb{D}(f_! f^\ast B)$ then prop. \ref{AbstractWirthmuellerIso} gives a natural equivalence of the form \begin{displaymath} \mathbb{D}(f_! f^\ast B) \stackrel{\simeq}{\longrightarrow} f_! f^\ast ((\mathbb{D}B) \otimes D) \,, \end{displaymath} saying that the [[comonad]] $f_! f^\ast$ commutes with dualization up to a ``twist'' given by tensoring with $D$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{CartesianWirthmuellerContexts}{}\subsubsection*{{Cartesian Wirthm\"u{}ller contexts in toposes}}\label{CartesianWirthmuellerContexts} For $\mathbf{H}$ a [[topos]] and $f \colon X \longrightarrow Y$ any [[morphism]], then in the induced [[base change]] [[etale geometric morphism]] \begin{displaymath} (\sum_f \dashv f^\ast \dashv \prod_f) \;\colon\; \mathbf{H}_{/X} \longrightarrow \mathbf{H}_{/Y} \end{displaymath} the [[inverse image]]/[[context extension]] is a [[cartesian closed functor]] (see there for the proof). Therefore any base change of [[toposes]] constitutes a cartesian Wirthm\"u{}ller context. Conversely, this means that systems of Wirthm\"u{}ller contexts are generalizations of [[categorical logic]] ([[hyperdoctrines]]) to non-cartesian contexts (see at \emph{[[dependent linear type theory]]}). Notice that in a cartesian Wirthm\"u{}ller context duality is trivial, in that $\mathbb{D}X \simeq 1$ for all objects $X$. Therefore to the extent that the [[six operations]] yoga involves duality, it is interesting only the more non-cartesian (non-classical) the ambient Wirthm\"u{}ller context is. For instance the [[projection formula]] $\overline{\gamma}$ in def. \ref{ComparisonMaps} for base change along a pointed connected type $\mathbf{B}G \to \ast$ equivalently says that genuine ([[Bredon cohomology|Bredon]]) [[equivariant cohomology]] reduces to [[Borel equivariant cohomology]] when the action on the coefficients is trivial. See at \emph{[[equivariant cohomology]]} for more on this. \hypertarget{PointedObjects}{}\subsubsection*{{Pointed objects with smash product}}\label{PointedObjects} A first step away from the Cartesian example \hyperlink{CartesianWirthmuellerContexts}{above} is the following. Let $\mathbf{H}$ be a [[topos]]. For $X \in \mathbf{H}$ any [[object]], write \begin{displaymath} \mathcal{C}_X \coloneqq \mathbf{H}_{/X}^{X/} \end{displaymath} for the [[category of pointed objects]] in the [[slice topos]] $\mathbf{H}_{/X}$. Equipped with the [[smash product]] $\wedge_X$ this is a [[closed monoidal category|closed]] [[symmetric monoidal category]] $(\mathcal{C}_X, \wedge_X, X \coprod X)$. \begin{prop} \label{}\hypertarget{}{} For $f \colon X \longrightarrow Y$ any [[morphism]] in $\mathbf{H}$, the [[base change]] [[inverse image]] $f^\ast$ restricts to a functor $f^\ast \colon \mathcal{C}_Y \longrightarrow \mathcal{C}_X$ which is a Wirthm\"u{}ller context. \end{prop} This appears as (\hyperlink{Shulman07}{Shulman 07, examples 12.13 and 13.7}) and (\hyperlink{Shulman12}{Shulman 12, example 2.33}). \begin{proof} For $f \colon X \longrightarrow Y$ any [[morphism]] in $\mathbf{H}$ then the [[base change]] [[inverse image]] $f^\ast \colon \mathbf{H}_{/Y} \longrightarrow \mathbf{H}_{/X}$ preserves pointedness, and the [[pushout]] functor $f_! \colon \mathbf{H}^{X/} \longrightarrow \mathbf{H}^{/Y}$ preserves co-pointedness. These two functors hence form an [[adjoint pair]] $(f_1 \dashv f^\ast) \colon \mathcal{C}_X \longrightarrow \mathcal{C}_Y$. Moreover, since [[colimits]] in the under-over category $\mathbf{H}_{/X}^{X/}$ are computed as colimits in $\mathbf{H}$ of [[diagrams]] with an [[initial object]] adjoined, and since by the [[Giraud axioms]] in the [[topos]] $\mathbf{H}$ [[pullback]] preserves these colimits, it follows that $f^\ast \colon \mathcal{C}_Y \to \mathcal{C}_X$ preserves colimits. Finally by the discussion at \emph{[[category of pointed objects]]} we have that $\mathcal{C}_X$ and $\mathcal{C}_Y$ are [[locally presentable categories]], so that by the [[adjoint functor theorem]] it follows that $f^\ast$ has also a [[right adjoint]] $f_\ast \colon \mathcal{C}_X \to \mathcal{C}_Y$. To see that $f^\ast$ is a [[strong monoidal functor]] observe that the [[smash product]] is, by the discussion there, given by a [[pushout]] over [[coproducts]] and [[products]] in the [[slice topos]]. As above these are all preserved by [[pullback]]. Finally to see that $f^\ast$ is also a [[strong closed functor]] observe that the [[internal hom]] on [[pointed objects]] is, by the discussion there, a [[fiber product]] of cartesian internal homs. These are preserved by \hyperlink{CartesianWirthmuellerContexts}{the above case}, and the fiber product is preserved since $f^\ast$ preserves all limits. Hence $f^\ast$ preserves also the internal homs of pointed objects. \end{proof} \hypertarget{bundles_of_modules}{}\subsubsection*{{Bundles of modules}}\label{bundles_of_modules} For $R$ a [[ring]], $R Mod$ its [[category of modules]], there is a [[functor]] \begin{displaymath} [-, R Mod] \;\colon\; Set^{op} \longrightarrow ClMonCat \end{displaymath} which sends a [[set]] $X$ to the [[closed monoidal category]] of $R$-[[modules]] parameterized over $X$. This takes values in Wirthm\"u{}ller morphisms. (\hyperlink{Shulman12}{Shulman 12, example 2.2, 2.17}). \hypertarget{bundles_of_modules_2}{}\subsubsection*{{Bundles of $\infty$-modules}}\label{bundles_of_modules_2} for [[(infinity,1)-module bundles]]: ([[schreiber:master thesis Nuiten|Nuiten 13]], \hyperlink{HopkinsLurie}{Hopkins-Lurie}, [[schreiber:Homotopy-type semantics for quantization|Schreiber 14]]) \hypertarget{beckergottlieb_transfer}{}\subsubsection*{{Becker-Gottlieb transfer}}\label{beckergottlieb_transfer} A \emph{[[transfer context]]} is a Wirthm\"u{}ller context in which also $f_\ast$ satisfies its [[projection formula]]. In this context there is an abstract concept of \emph{[[Becker-Gottlieb transfer]]}. See there for more. \hypertarget{in_equivariant_stable_homotopy_theory}{}\subsubsection*{{In equivariant stable homotopy theory}}\label{in_equivariant_stable_homotopy_theory} In [[equivariant stable homotopy theory]], see (\hyperlink{May05b}{May 05b}). \hypertarget{ForQuasicoherentSheaves}{}\subsubsection*{{For quasicoherent sheaves (in $E_\infty$-geometry)}}\label{ForQuasicoherentSheaves} Pull-push of [[quasicoherent sheaves]] is usually discussed as a [[Grothendieck context]] of [[six operations]], but under some conditions it also becomes a Wirthm\"u{}ller context. Using results of Lurie this follows in the full generality of [[E-∞ geometry]] ([[spectral geometry]]). Consider quasi-compact and quasi-separated [[E-∞ algebraic spaces]] ([[spectral algebraic spaces]]). (This includes precisely those [[spectral Deligne-Mumford stacks]] which have a [[scallop decomposition]], see \href{derived+Deligne-Mumford+stack#RelationToDerivedAlgebraicSpaces}{here}.) If $f \;\colon\; X \longrightarrow Y$ is a map between these which is \begin{enumerate}% \item locally almost of finite presentation; \item strongly proper; \item has finite [[Tor-amplitude]] \end{enumerate} then the left adjoint to pullback of [[quasicoherent sheaves]] exists \begin{displaymath} (f_! \dashv f^\ast) \;\colon\; QCoh(X) \stackrel{\overset{f_!}{\longrightarrow}}{\underset{f^\ast}{\longleftarrow}} QCoh(Y) \,. \end{displaymath} ([[Proper Morphisms, Completions, and the Grothendieck Existence Theorem|LurieProper, proposition 3.3.23]]) If $f$ is \begin{itemize}% \item quasi-affine \end{itemize} then the right adjoint exists \begin{displaymath} (f^\ast \dashv f_\ast) \;\colon\; QCoh(X) \stackrel{\overset{f^\ast}{\longleftarrow}}{\underset{f_\ast}{\longrightarrow}} QCoh(Y) \,. \end{displaymath} ([[Quasi-Coherent Sheaves and Tannaka Duality Theorems|LurieQC, prop. 2.5.12]], [[Proper Morphisms, Completions, and the Grothendieck Existence Theorem|LurieProper, proposition 2.5.12]]) The [[projection formula]] in the dual form \begin{displaymath} f_\ast A \otimes B \longrightarrow f_\ast (A\otimes f^\ast B) \end{displaymath} for $f$ quasi-compact and quasi-separated appears as ([[Proper Morphisms, Completions, and the Grothendieck Existence Theorem|LurieProper, remark 1.3.14]]). Now if all the conditions on $f$ hold, so that $(f_! \dashv f^\ast \dashv f_\ast) \;\colon\; QCoh(X) \longrightarrow QCoh(Y)$, then passing to opposite categories $QCoh(X)^{op} \longrightarrow QCoh(Y)^{op}$ exchanges the roles of $f_!$ and $f_\ast$, makes the projection formula be as in the above discussion and hence yields a Wirthm\"u{}ller context. The existence of [[dualizing modules]] $K$ \begin{displaymath} D X = [X,K] \end{displaymath} is discussed in ([[Representability theorems|Lurie, Representability theorems, section 4.2]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Verdier-Grothendieck context]] \item [[Grothendieck context]] \item [[Beck-Chevalley condition]] \item [[ambidextrous adjunction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The Wirthmüller isomorphism in [[equivariant stable homotopy theory]] goes back to and is named after \begin{itemize}% \item [[Klaus Wirthmüller]], \emph{Equivariant homology and duality}. Manuscripta Math. 11(1974), 373-390 \end{itemize} see Theorem II.6.2 in \begin{itemize}% \item [[L. Gaunce Lewis]], [[Peter May]], and Mark Steinberger (with contributions by J.E. McClure), \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics Vol.1213. 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}) \end{itemize} see also \begin{itemize}% \item [[Denis Nardin]], section 2.6 and A.3 of \emph{Stability and distributivity over orbital ∞-categories}, 2012 (\href{http://hdl.handle.net/1721.1/112895}{hdl.handle.net/1721.1/112895}, \href{https://www.math.univ-paris13.fr/~nardin/thesis.pdf}{pdf}) \end{itemize} A clear discussion of axioms of [[six operations]] and their consequences, with emphasis on the Wirthm\"u{}ller isomorphisms, is in \begin{itemize}% \item [[Halvard Fausk]], P. Hu, [[Peter May]], \emph{Isomorphisms between left and right adjoints}, Theory and Applications of Categories , Vol. 11, 2003, No. 4, pp 107-131. (\href{http://www.tac.mta.ca/tac/volumes/11/4/11-04abs.html}{TAC}, \href{http://www.math.uiuc.edu/K-theory/0573/FormalFeb16.pdf}{pdf}) \item [[Paul Balmer]], [[Ivo Dell'Ambrogio]], [[Beren Sanders]], \emph{Grothendieck-Neeman duality and the Wirthm\"u{}ller isomorphism}, Compositio Mathematica 152.8 (2016): 1740-1776 (\href{http://arxiv.org/abs/1501.01999}{arXiv:1501.01999}) \end{itemize} Discussion of the original Wirthm\"u{}ller isomorphism in [[equivariant stable homotopy theory]], based on this, is in \begin{itemize}% \item [[Peter May]], \emph{The Wirthm\"u{}ller isomorphism revisited}, Theory and Applications of Categories 11.5 (2003): 132-142 (\href{http://www.tac.mta.ca/tac/volumes/11/5/11-05abs.html}{TAC:11/5/11-05}, \href{http://www.math.uiuc.edu/K-theory/0574/WirthRev.pdf}{K-theory:0574}) \end{itemize} More elaboration of the Wirthm\"u{}ller context is in \begin{itemize}% \item Baptiste Calm\`e{}s, Jens Hornbostel, section 4 of \emph{Tensor-triangulated categories and dualities}, Theory and Applications of Categories, Vol. 22, 2009, No. 6, pp 136-198 (\href{http://www.tac.mta.ca/tac/volumes/22/6/22-06abs.html}{TAC}, \href{http://arxiv.org/abs/0806.0569}{arXiv:0806.0569}) \end{itemize} Discussion in the context of [[pure motives]] includes \begin{itemize}% \item [[Frédéric Déglise]], around prop. 1.34 of \emph{Finite correspondences and transfers over a regular base}, \href{http://www.math.uiuc.edu/K-theory/0765/regular_base.pdf}{pdf}. \end{itemize} Wirthm\"u{}ller morphisms between pointed objects and between bundles of modules are discussed in \begin{itemize}% \item [[Mike Shulman]], \emph{Framed bicategories and monoidal fibrations}, in Theory and Applications of Categories, Vol. 20, 2008, No. 18, pp 650-738. (\href{http://arxiv.org/abs/0706.1286}{arXiv:0706.1286}, \href{http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html}{TAC}) \item [[Mike Shulman]], \emph{Enriched indexed categories} (\href{http://arxiv.org/abs/1212.3914}{arXiv:1212.3914}) \end{itemize} Discussion in [[E-∞ geometry]] is in \begin{itemize}% \item [[Jacob Lurie]], section 3.3. of \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \item [[Jacob Lurie]], section 4.2 of \emph{[[Representability theorems]]} \item [[Michael Hopkins]], [[Jacob Lurie]], \emph{[[Ambidexterity in K(n)-Local Stable Homotopy Theory]]} \end{itemize} [[!redirects Wirthmüller contexts]] [[!redirects Wirthmueller context]] [[!redirects Wirthmueller contexts]] [[!redirects Wirthmuller context]] [[!redirects Wirthmuller contexts]] [[!redirects Wirthmüller isomorphism]] [[!redirects Wirthmüller isomorphisms]] [[!redirects Wirthmueller isomorphism]] [[!redirects Wirthmueller isomorphisms]] [[!redirects Wirthmuller isomorphism]] [[!redirects Wirthmuller isomorphisms]] \end{document}