\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Yoneda lemma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{StatementOfYonedaLemma}{Statement and proof}\dotfill \pageref*{StatementOfYonedaLemma} \linebreak \noindent\hyperlink{corollaries}{Corollaries}\dotfill \pageref*{corollaries} \linebreak \noindent\hyperlink{corollary_i_yoneda_embedding}{corollary I: Yoneda embedding}\dotfill \pageref*{corollary_i_yoneda_embedding} \linebreak \noindent\hyperlink{corollary_ii_uniqueness_of_representing_objects}{corollary II: uniqueness of representing objects}\dotfill \pageref*{corollary_ii_uniqueness_of_representing_objects} \linebreak \noindent\hyperlink{corollary_iii_universality_of_representing_objects}{corollary III: universality of representing objects}\dotfill \pageref*{corollary_iii_universality_of_representing_objects} \linebreak \noindent\hyperlink{interpretation}{Interpretation}\dotfill \pageref*{interpretation} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{necessity_of_naturality}{Necessity of naturality}\dotfill \pageref*{necessity_of_naturality} \linebreak \noindent\hyperlink{the_yoneda_lemma_in_semicategories}{The Yoneda lemma in semicategories}\dotfill \pageref*{the_yoneda_lemma_in_semicategories} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Yoneda lemma} says that the [[set]] of [[morphisms]] from a [[representable presheaf]] $y(c)$ into an arbitrary [[presheaf]] $X$ is in [[natural bijection]] with the set $X(c)$ assigned by $X$ to the representing [[object]] $c$. The Yoneda lemma is an elementary but deep and central result in [[category theory]] and in particular in [[sheaf and topos theory]]. It is essential background behind the central concepts of \emph{[[representable functors]]}, \emph{[[universal constructions]]}, and \emph{[[universal elements]]}. \hypertarget{StatementOfYonedaLemma}{}\subsection*{{Statement and proof}}\label{StatementOfYonedaLemma} \begin{defn} \label{FunctorUnderlyingTheYonedaEmbedding}\hypertarget{FunctorUnderlyingTheYonedaEmbedding}{} \textbf{([[functor]] underlying the [[Yoneda embedding]])} For $\mathcal{C}$ a [[locally small category]] we write \begin{displaymath} [C^{op}, Set] \coloneqq Func(C^{op}, Set) \end{displaymath} for the [[functor category]] out of the [[opposite category]] of $\mathcal{C}$ into [[Set]]. This is also called the \emph{[[category of presheaves]]} on $\mathcal{C}$. Other notation used for it includes $Set^{C^{op}}$ or $Hom(C^{op},Set))$. There is a [[functor]] \begin{displaymath} \itexarray{ C &\overset{y}{\longrightarrow}& [C^op,Set] \\ c &\mapsto& Hom_{\mathcal{C}}(-,c) } \end{displaymath} (called the \emph{[[Yoneda embedding]]} for reasons explained below) from $\mathcal{C}$ to its [[category of presheaves]], which sends each [[object]] to the [[hom-functor]] into that object, also called the [[representable presheaf|presheaf represented]] by $c$. \end{defn} \begin{remark} \label{}\hypertarget{}{} \textbf{([[Yoneda embedding]] is [[adjunct]] of [[hom-functor]])} The Yoneda embedding functor $y \;\colon\; \mathcal{C} \to [\mathcal{C}^{op}, Set]$ from Def. \ref{FunctorUnderlyingTheYonedaEmbedding} is equivalently the [[adjunct]] of the [[hom-functor]] \begin{displaymath} Hom_{\mathcal{C}} \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow Set \end{displaymath} under the [[product category]]/[[functor category]] [[adjoint functor|adjunction]] \begin{displaymath} Hom(C^{op} \times C, Set) \stackrel{\simeq}{\to} Hom(C, [C^{op}, Set]) \end{displaymath} in the [[closed monoidal category|closed]] [[monoidal category|symmetric monoidal category]] of categories. \end{remark} \begin{prop} \label{YonedaLemma}\hypertarget{YonedaLemma}{} \textbf{([[Yoneda lemma]])} Let $\mathcal{C}$ be a [[locally small category]], with [[category of presheaves]] denoted $[\mathcal{C}^{op},Set]$, according to Def. \ref{FunctorUnderlyingTheYonedaEmbedding}. For $X \in [\mathcal{C}^{op}, Set]$ any [[presheaf]], there is a canonical [[isomorphism]] \begin{displaymath} Hom_{[C^op,Set]}(y(c),X) \;\simeq\; X(c) \end{displaymath} between the [[hom-set]] of [[presheaf]] [[homomorphisms]] from the [[representable presheaf]] $y(c)$ to $X$, and the value of $X$ at $c$. \end{prop} This is the standard notation used mostly in pure [[category theory]] and [[enriched category theory]]. In other parts of the literature it is customary to denote the presheaf represented by $c$ as $h_c$. In that case the above is often written \begin{displaymath} Hom(h_c, X) \simeq X(c) \end{displaymath} or \begin{displaymath} Nat(h_c, X) \simeq X(c) \end{displaymath} to emphasize that the morphisms of presheaves are [[natural transformation]]s of the corresponding functors. \begin{proof} The proof is by chasing the element $Id_c \in C(c, c)$ around both legs of a [[naturality square]] for a [[natural transformation]] $\eta: C(-, c) \to X$ (hence a homomorphism of presheaves): \begin{displaymath} \itexarray{ C(c, c) & \stackrel{\eta_c}{\to} & X(c) & & & & Id_c & \mapsto & \eta_c(Id_c) & \stackrel{def}{=} & \xi \\ _\mathllap{C(f, c)} \downarrow & & \downarrow _\mathrlap{X(f)} & & & & \downarrow & & \downarrow _\mathrlap{X(f)} & & \\ C(b, c) & \underset{\eta_b}{\to} & X(b) & & & & f & \mapsto & \eta_b(f) & & } \end{displaymath} What this diagram shows is that the entire transformation $\eta: C(-, c) \to X$ is completely determined from the single value $\xi \coloneqq \eta_c(Id_c) \in X(c)$, because for each object $b$ of $C$, the component $\eta_b: C(b, c) \to X(b)$ must take an element $f \in C(b, c)$ (i.e., a morphism $f: b \to c$) to $X(f)(\xi)$, according to the commutativity of this diagram. The crucial point is that the naturality condition on any [[natural transformation]] $\eta : C(-,c) \Rightarrow X$ is sufficient to ensure that $\eta$ is already entirely fixed by the value $\eta_c(Id_c) \in X(c)$ of its component $\eta_c : C(c,c) \to X(c)$ on the [[identity morphism]] $Id_c$. And every such value extends to a natural transformation $\eta$. More in detail, the bijection is established by the map \begin{displaymath} [C^{op}, Set](C(-,c),X) \stackrel{|_{c}}{\to} Set(C(c,c), X(c)) \stackrel{ev_{Id_c}}{\to} X(c) \end{displaymath} where the first step is taking the component of a [[natural transformation]] at $c \in C$ and the second step is [[evaluation]] at $Id_c \in C(c,c)$. The inverse of this map takes $f \in X(c)$ to the natural transformation $\eta^f$ with components \begin{displaymath} \eta^f_d := X(-)(f) : C(d,c) \to X(d) \,. \end{displaymath} \end{proof} \hypertarget{corollaries}{}\subsection*{{Corollaries}}\label{corollaries} The Yoneda lemma has the following direct consequences. As the Yoneda lemma itself, these are as easily established as they are useful and important. \hypertarget{corollary_i_yoneda_embedding}{}\subsubsection*{{corollary I: Yoneda embedding}}\label{corollary_i_yoneda_embedding} The Yoneda lemma implies that the [[Yoneda embedding]] functor $y \colon C \to [C^op,Set]$ really is an \emph{embedding} in that it is a [[full and faithful functor]], because for $c,d \in C$ it naturally induces the isomorphism of Hom-sets. \begin{displaymath} [C^{op},Set](C(-,c),C(-,d)) \simeq (C(-,d))(c) = C(c,d) \end{displaymath} \hypertarget{corollary_ii_uniqueness_of_representing_objects}{}\subsubsection*{{corollary II: uniqueness of representing objects}}\label{corollary_ii_uniqueness_of_representing_objects} Since the [[Yoneda embedding]] is a [[full and faithful functor]], an [[isomorphism]] of [[representable functor|representable presheaves]] $y(c) \simeq y(d)$ must come from an [[isomorphism]] of the representing objects $c \simeq d$: \begin{displaymath} y(c) \simeq y(d) \;\; \Leftrightarrow \;\; c \simeq d \end{displaymath} \hypertarget{corollary_iii_universality_of_representing_objects}{}\subsubsection*{{corollary III: universality of representing objects}}\label{corollary_iii_universality_of_representing_objects} A [[presheaf|presheaf]] $X \colon C^{op} \to Set$ is [[representable functor|representable]] precisely if the [[comma category|comma category]] $(y,const_X)$ has a [[terminal object]]. If a [[terminal object]] is $(d, g : y(d) \to X) \simeq (d, g \in X(d))$ then $X \simeq y(d)$. This follows from unwrapping the definition of [[morphisms]] in the [[comma category]] $(y,const_X)$ and applying the Yoneda lemma to find \begin{displaymath} (y,const_X)((c,f \in X(c)), (d, g \in X(d))) \simeq \{ u \in C(c,d) : X(u)(g) = f \} \,. \end{displaymath} Hence $(y,const_X)((c,f \in X(c), (d, g \in X(d))) \simeq pt$ says precisely that $X(-)(f) \colon C(c,d) \to X(c)$ is a bijection. \hypertarget{interpretation}{}\subsubsection*{{Interpretation}}\label{interpretation} For emphasis, here is the interpretation of these three corollaries in words: \begin{itemize}% \item \textbf{corollary I} says that the interpretation of presheaves on $C$ as generalized objects probeable by objects $c$ of $C$ is consistent: the probes of $X$ by $c$ are indeed the maps of generalized objects from $c$ into $X$; \item \textbf{corollary II} says that probes by objects of $C$ are sufficient to distinguish objects of $C$: two objects of $C$ are the same if they have the same probes by other objects of $C$. \item \textbf{corollary III} characterizes [[representable functor]]s by a [[universal property]] and is hence the bridge between the notion of [[representable functor]] and [[universal construction]]s. \end{itemize} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} The Yoneda lemma tends to carry over to all important generalizations of the context of [[locally small category|categories]]: \begin{itemize}% \item There is an analog of the Yoneda lemma in [[enriched category theory]]. See [[enriched Yoneda lemma]]. \item In the context of [[module]]s (see also [[Day convolution]]) the Yoneda lemma becomes the important statement of [[Yoneda reduction]], which identifies the bimodule $\hom_C(-, -)$ as a unit bimodule. \item There is a [[Yoneda lemma for bicategories]]. \item There is a [[Yoneda lemma for (∞,1)-categories]]. \item In [[functional programming]], the Yoneda embedding is related to the [[continuation passing style]] transform. \item Formulation of the lemma in [[dependent type theory]]: \href{http://homotopytypetheory.org/2012/05/02/a-type-theoretical-yoneda-lemma/}{A type theoretical Yoneda lemma} at \href{http://homotopytypetheory.org}{homotopytypetheory.org} \end{itemize} \hypertarget{necessity_of_naturality}{}\subsection*{{Necessity of naturality}}\label{necessity_of_naturality} The assumption of naturality is necessary for the Yoneda lemma to hold. A simple counter-example is given by a category with two objects $A$ and $B$, in which $Hom(A,A) = Hom(A,B) = Hom(B,B) = \mathbb{Z}_{\geq 0}$, the set of integers greater than or equal to $0$, in which $Hom(B,A) = \mathbb{Z}_{\geq 1}$, the set of integers greater than or equal to $1$, and in which composition is addition. Here it is certainly the case that $Hom(A,-)$ is isomorphic to $Hom(B,-)$ for any choice of $-$, but $A$ and $B$ are not isomorphic (composition with any arrow $B \rightarrow A$ is greater than or equal to $1$, so cannot have an inverse, since $0$ is the identity on $A$ and $B$). A finite counter-example is given by the category with two objects $A$ and $B$, in which $Hom(A,A) = Hom(A,B) = Hom(B,B) = \{0, 1\}$, in which $Hom(B,A) = \{0, 2\}$, and composition is multiplication modulo 2. Here, again, it is certainly the case that $Hom(A,-)$ is isomorphic to $Hom(B,-)$ for any choice of $-$, but $A$ and $B$ are not isomorphic (composition with any arrow $B \rightarrow A$ is $0$, so cannot have an inverse, since $1$ is the identity on $A$ and $B$). \hypertarget{the_yoneda_lemma_in_semicategories}{}\subsection*{{The Yoneda lemma in semicategories}}\label{the_yoneda_lemma_in_semicategories} An interesting phenomenon arises in the case of [[semicategory|semicategories]] i.e. ``categories'' (possibly) lacking [[identity morphisms]]: the Yoneda lemma fails in general, since its validity in a semicategory $\mathcal{G}$ implies that $\mathcal{G}$ is in fact already a category because the Yoneda lemma permits to embed $\mathcal{G}$ into $PrSh(\mathcal{G})$ and the latter is always a category, the embedding then implying that $\mathcal{G}$ is itself a category! But for [[regular semicategories]] $\mathcal{R}$ there is a [[unity of opposites]] in the category of all [[semipresheaves]] on $\mathcal{R}$ between the so called regular presheaves that are [[colimits]] of [[representable presheaf|representables]] and presheaves satisfying the Yoneda lemma, whence \emph{the Yoneda lemma holds dialectically for regular presheaves!} For some of the details see at \emph{[[regular semicategory]]} and the references therein. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The Yoneda lemma is the or a central ingredient in various [[reconstruction theorem]]s, such as those of [[Tannaka duality]]. See there for a detailed account. \item In its incarnations as [[Yoneda reduction]] the Yoneda lemma governs the algebra of [[end]]s and [[coend]]s and hence that of [[bimodule]]s and [[profunctor]]s. \item The Yoneda lemma is effectively the reason that [[Isbell conjugation]] exists. This is a fundamental duality that relates [[geometry]] and [[algebra]] in large part of mathematics. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Yoneda reduction]] \item [[co-Yoneda lemma]] \item [[Yoneda structure]] \item [[Brown representability theorem]] \item [[continuation-passing style]] \item [[regular semicategory]] \end{itemize} $\backslash$linebreak \hypertarget{References}{}\subsection*{{References}}\label{References} For general references see any text on [[category theory]], as listed in the references \href{category+theory#References}{there}. The term \emph{Yoneda lemma} originated in an interview of [[Nobuo Yoneda]] by [[Saunders Mac Lane]] at Paris Gare du Nord: \begin{itemize}% \item Yoshiki Kinoshita, \href{http://www.mta.ca/~cat-dist/catlist/1999/yoneda}{posting to catlist in 1996}. \end{itemize} In \emph{[[Categories for the Working Mathematician]]} MacLane writes that this happened in 1954. Reviews and expositions include \begin{itemize}% \item [[Saunders MacLane]], \emph{The Yoneda Lemma}, Mathematica Japonicae 47: 156 (1998) \item [[Tom Leinster]], \emph{[[LeinsterYoneda.ps:file]]} \item Marie La Palme Reyes, Gonzalo E. Reyes, and Houman Zolfaghari, \emph{Generic figures and their glueings: A constructive approach to functor categories}, Polimetrica sas, 2004 (\href{https://reyes-reyes.com/2004/06/01/generic-figures-and-their-glueings-a-constructive-approach-to-functor-categories/}{author page},\href{https://marieetgonzalo.files.wordpress.com/2004/06/generic-figures.pdf}{pdf}). \end{itemize} A discussion of the Yoneda lemma from the point of view of [[universal algebra]] is in \begin{itemize}% \item [[Vaughan Pratt]], \emph{The Yoneda lemma without category theory: algebra and applications} (\href{http://boole.stanford.edu/pub/yon.pdf}{pdf}). \end{itemize} [[!redirects yoneda lemma]] [[!redirects Yoneda Lemma]] [[!redirects Yoneda embedding lemma]] [[!redirects Yoneda imbedding lemma]] \end{document}