\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Zariski site} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{points}{Points}\dotfill \pageref*{points} \linebreak \noindent\hyperlink{as_a_site}{As a site}\dotfill \pageref*{as_a_site} \linebreak \noindent\hyperlink{sheafification}{Sheafification}\dotfill \pageref*{sheafification} \linebreak \noindent\hyperlink{KripkeJoyal}{Kripke--Joyal semantics}\dotfill \pageref*{KripkeJoyal} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There is a [[little site]] notion of the [[Zariski topology]], and a [[big site]] notion. As for the little site notion: the Zariski topology on the set of prime ideals of a commutative ring $R$ is the smallest topology that contains, as open sets, sets of the form $\{p\; \text{prime}: a \notin p\}$ where $a$ ranges over elements of $R$. As for the big site notion, the \emph{Zariski topology} is a [[coverage]] on the [[opposite category]] [[CRing]]${}^{op}$ of commutative rings. This article is mainly about the big site notion. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $R$ a commutative [[ring]], write $Spec R \in CRing^{op}$ for its [[spectrum of a commutative ring]], hence equivalently for its incarnation in the [[opposite category]]. \begin{defn} \label{StandardOpenImmersion}\hypertarget{StandardOpenImmersion}{} For $S \subset R$ a [[multiplicative subset]], write $R[S^{-1}]$ for the corresponding [[localization of a ring|localization]] and \begin{displaymath} Spec(R[S^{-1}]) \longrightarrow Spec(R) \end{displaymath} for the dual of the canonical ring homomorphism $R \to R[S^{-1}]$. \end{defn} \begin{remark} \label{}\hypertarget{}{} The maps as in def. \ref{StandardOpenImmersion} are not [[open immersion of schemes|open immersions]] for arbitrary multiplicative subsets $S$ (see \href{http://mathoverflow.net/questions/20782/ring-theoretic-characterization-of-open-affines}{a MathOverflow discussion}). They are for subsets of the form $S = \{ f^0, f^1, f^2, \ldots \}$, in which case they are called the \emph{standard opens} of $Spec(R)$. \end{remark} \begin{defn} \label{}\hypertarget{}{} A family of [[morphisms]] $\{Spec A_i \to Spec R\}$ in $CRing^{op}$ is a Zariski-[[covering]] precisely if \begin{itemize}% \item each ring $A_i$ is the [[localization]] \begin{displaymath} A_i = R[r_i^{-1}] \end{displaymath} of $R$ at a single element $r_i \in R$ \item $Spec A_i \to Spec R$ is the canonical inclusion, dual to the canonical ring homomorphism $R \to R[r_i^{-1}]$; \item There exists $\{f_i \in R\}$ such that \begin{displaymath} \sum_i f_i r_i = 1 \,. \end{displaymath} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} Geometrically, one may think of \begin{itemize}% \item $r_i$ as a function on the [[space]] $Spec R$; \item $R[r_i^{-1}]$ as the [[open subset]] of points in this space on which the function is not 0; \item the covering condition as saying that the functions form a [[partition of unity]] on $Spec R$. \end{itemize} \end{remark} \begin{defn} \label{ZariskiTopos}\hypertarget{ZariskiTopos}{} Let $CRing_{fp} \hookrightarrow CRing$ be the [[full subcategory]] on [[finitely presented object]]s. This inherits the Zariski [[coverage]]. The [[sheaf topos]] over this [[site]] is the [[big topos]] version of the \textbf{Zariski topos}. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{points}{}\subsubsection*{{Points}}\label{points} The [[maximal ideal]] in $R$ correspond precisely to the [[closed subset|closed]] points of the [[prime spectrum]] $Spec(R)$ in the Zariski topology. \hypertarget{as_a_site}{}\subsubsection*{{As a site}}\label{as_a_site} \begin{prop} \label{}\hypertarget{}{} The Zariski coverage is [[subcanonical coverage|subcanonical]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} \begin{itemize}% \item $CRing_{fp}^{op}$ is the [[syntactic category]] of the [[cartesian theory]] of commutative rings; \item $CRing_{fp}^{op}$ equipped with the Zariski topology is the [[syntactic site]] of the [[geometric theory]] of [[local ring]]s. \end{itemize} Hence \begin{itemize}% \item the big Zariski topos, def. \ref{ZariskiTopos}, is the [[classifying topos]] for [[local ring]]s. \item a [[locally ringed topos]] is equivalently a topos $\mathcal{E}$ equipped with a [[geometric morphism]] into the big Zariski topos. \end{itemize} \end{prop} See [[classifying topos]] and [[locally ringed topos]] for more details on this. \hypertarget{sheafification}{}\subsubsection*{{Sheafification}}\label{sheafification} If $F$ is a presheaf on $CRing^{op}$ and $F^{++}$ denotes its [[sheafification]], then the canonical morphism $F(R) \to F^{++}(R)$ is an isomorphism for all [[local ring|local rings]] $R$. This follows from the explicit description of the [[plus construction]] and the fact that a local ring admits only the trivial covering. \hypertarget{KripkeJoyal}{}\subsection*{{Kripke--Joyal semantics}}\label{KripkeJoyal} Writing $R \models \varphi$ for the interpretation of a formula $\varphi$ of the [[internal language]] of the big Zariski topos over $Spec(R)$ with the [[Kripke–Joyal semantics]], the forcing relation can be expressed as follows. \begin{displaymath} \begin{array}{lcl} R \models x = y : F &\Longleftrightarrow& x = y \in F(R). \\ R \models \top &\Longleftrightarrow& 1 = 1 \in R. \\ R \models \bot &\Longleftrightarrow& 1 = 0 \in R. \\ R \models \phi \wedge \psi &\Longleftrightarrow& R \models \phi \,\text{and}\, R \models \psi. \\ R \models \phi \vee \psi &\Longleftrightarrow& \text{there is a partition}\, \sum_i f_i = 1 \in R \,\text{such that for all}\, i, R[f_i^{-1}] \models \phi \,or\, R[f_i^{-1}] \models \psi. \\ R \models \phi \Rightarrow \psi &\Longleftrightarrow& \text{for any}\, R\text{-algebra}\, S \,\text{it holds that}\, (S \models \phi) \,implies\, (S \models \psi). \\ R \models \forall x:F. \phi &\Longleftrightarrow& \text{for any}\, R\text{-algebra}\, S \,\text{and any element}\, x \in F(S) \,\text{it holds that}\, S \models \phi[x]. \\ R \models \exists x.F. \phi &\Longleftrightarrow& \text{there is a partition}\, \sum_i f_i = 1 \in R \,\text{such that for all}\, i, \text{there exists an element}\, x_i \in F(R[f_i^{-1}]) \,\text{such that}\, R[f_i^{-1}] \models \phi[x_i]. \end{array} \end{displaymath} The only difference to the Kripke--Joyal semantics of the \emph{little} Zariski topos is that in the clauses for $\Rightarrow$ and $\forall$, one has to restrict to $R$-algebras $S$ of the form $S = R[f^{-1}]$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[fpqc-site]] $\to$ [[fppf-site]] $\to$ [[syntomic site]] $\to$ [[étale site]] $\to$ [[Nisnevich site]] $\to$ \textbf{Zariski site} \begin{itemize}% \item [[spectrum of a commutative ring]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Examples A2.1.11(f) and D3.1.11 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Section VIII.6 of \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} \begin{itemize}% \item [[The Stacks Project]], chapter 33 \emph{Topologies on Schemes} \item Nick Duncan, \emph{Gros and Petit Toposes}, talk notes, \href{http://cheng.staff.shef.ac.uk/pssl88/}{88th Peripatetic Seminar on Sheaves and Logic}, \href{http://cheng.staff.shef.ac.uk/pssl88/pssl88-duncan.pdf}{pdf}. \item Daniel Murfet, \href{http://therisingsea.org/notes/ZariskiTopology.pdf}{The Zariski Site} \end{itemize} category: algebraic geometry [[!redirects Zariski topos]] [[!redirects big Zariski topos]] [[!redirects Zariski sheaf]] [[!redirects Zariski sheaves]] [[!redirects Zariski descent]] [[!redirects theory of local rings]] [[!redirects geometric theory of local rings]] \end{document}