\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{abelian variety} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{automatic_abelianness}{Automatic abelianness}\dotfill \pageref*{automatic_abelianness} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Abelian varieties are higher dimensional analogues of [[elliptic curve]]s (which are included) -- they are [[varieties]] equipped with a structure of an [[abelian group]], hence abelian [[group schemes]], whose multiplication and inverse are regular maps. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In his book \emph{Abelian Varieties}, David Mumford defines an \textbf{abelian variety} over an algebraically closed field $k$ to be a [[complete algebraic variety|complete]] [[algebraic group]] over $k$. Remarkably, any such thing is an \emph{abelian} algebraic group. The assumption of connectedness is necessary for that conclusion. \hypertarget{automatic_abelianness}{}\subsection*{{Automatic abelianness}}\label{automatic_abelianness} David Mumford gives at two proofs that every complete algebraic group over an algebraically closed field is automatically abelian. One of them uses a `rigidity lemma' which has an interesting category-theoretic interpretation. We outline this here: In simple terms, the rigidity lemma says that under certain circumstances ``a 2-variable function $f(x,y)$ that is independent of $x$ for one value of $y$ is independent of $x$ for all values of $y$.'' More precisely, in a category with products, say a morphism $f: X \to Y$ is if it factors through the unique morphism $X \to 1$. Say a morphism $f : X \times Y \to Z$ is if it factors through the projection $X \times Y \to Y$. Say a of $Y$ is a morphism $p: 1 \to Y$. Say a morphism $f: X \times Y \to Z$ is if $f \circ (1_X \times p) : X \to Y$ is constant. \textbf{Definition.} A category with finite products \textbf{obeys the rigidity lemma} if any morphism $f: X \times Y \to Z$ that is independent of $X$ at some point of $Y$ is in fact independent of $X$. \textbf{Theorem 1.} The category of complete algebraic varieties over an algebraically complete field $k$ has finite products and obeys the rigidity lemma. \begin{proof} The hard part, the rigidity lemma, is proved for complete algebraic varieties on page 43 of Mumford's \emph{Abelian Varieties}. Mumford mentions in a footnote that complete algebraic varieties are automatically irreducible, and he later seems to assume without much explanation that they are connected: these points could use some clarification, at least for amateurs. \end{proof} \textbf{Theorem 2.} Suppose $G,H$ are group objects in a category $C$ with finite products obeying the rigidity lemma. Suppose $f : G \to H$ is any morphism in $C$ preserving the identity. Then $f$ is a homomorphism. \begin{proof} The idea is this: suppose $C$ is a [[concrete category]] and look at the function $k : G \times G \to H$ given by \begin{displaymath} k(g,g') = f(g\cdot g')\cdot (f(g) \cdot f(g'))^{-1} \end{displaymath} Assume $f(1) = 1$. Then $k(1,g') = 1$ for all $g' \in G$, so by the rigidity lemma $k(g,g')$ is independent of $g'$ and we can write $k(g,g') = r(g)$. Furthermore $k(g,1) = 1$ for all $g \in G$ so $k(g,g')$ is independent of $g$. This means that $r(g)$ is independent of $g$, but $r(1) = k(1,1) = 1$ so $r(g) = 1$ for all $g$. This says that $f(g \cdot g') = f(g) \cdot f(g')$, so $f$ preserves multiplication. This in turn implies that $f$ preserves inverses, so $f$ is a group homomorphism. In fact a version of this argument works in any category with finite products obeying the rigidity lemma. The expression $f(g\cdot g')\cdot (f(g) \cdot f(g'))^{-1}$ compiles to a particular morphism $G\times G \xrightarrow{k} H$. The fact that $f$ preserves the identity $e_G:1\to G$ implies that both composites $G \xrightarrow{(id,e_G)} G\times G \xrightarrow{k} H$ and $G \xrightarrow{(e_G,id)} G\times G \xrightarrow{k} H$ are constant at the identity $e_H:1\to H$. (This is a straightforward calculation in the internal logic of a category with products, or alternatively a slightly tedious diagram chase.) In particular, $k$ is independent of the first $G$ in its domain at the point $e_G : 1\to G$ of the second $G$ in its domain. So by the rigidity lemma, there exists a morphism $r : G\to H$ such that the composite $G\times G \xrightarrow{\pi_2} G \xrightarrow{r} H$ is equal to $k$. Now precompose both of these with $G \xrightarrow{(e_G,id)} G\times G$: the first gives $r \circ \pi_2 \circ (e_G,id) = r$ and the second gives $k \circ (e_G,id) = e_H \circ !$. Thus, $r$ is constant at the identity of $H$, and hence so is $k$. This implies $f$ preserves multiplication, and thus also inverses (again, by a calculation in internal logic or a diagram chase). \end{proof} \textbf{Corollary 1.} If $C$ is a category with finite products obeying the rigidity lemma, any group object in $C$ is abelian. \begin{proof} If $G$ is a group object in $C$, the inverse map $inv: G \to G$ preserves the identity, so by the above theorem it is a group homomorphism. This in turn implies that $G$ is abelian. \end{proof} \textbf{Corollary 2.} Let $Var_*$ be the category of pointed complete varieties over an algebraically closed field $k$, and let $AbVar$ be the category of abelian varieties over $k$. Then the forgetful functor $U : AbVar \to Var_*$ is full. \begin{proof} This follows immediately from the two theorems above. \end{proof} A consequence of Corollary 2 is that if $Alb : Var_* \to AbVar$ is the left adjoint to $U$, sending any connected pointed projective variety to its Albanese variety, the monad $T = U \circ Alb$ is an [[idempotent monad]]. For more on this see [[Albanese variety]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[theta function]] \item [[Cartier duality]] \item [[dual abelian group scheme]] \item [[Albanese variety]] \end{itemize} \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} \begin{itemize}% \item C. Bartocci, Ugo Bruzzo, D. Hernandez Ruiperez, Fourier-Mukai and Nahm transforms in geometry and mathematical physics, Progress in Mathematics 276, Birkhauser 2009. \item [[M. Demazure]], [[P. Gabriel]], \emph{Groupes algebriques}, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970 -- has functor of points point of view; for review see Bull. London Math. Soc. (1980) 12 (6): 476-478, \href{http://dx.doi.org/10.1112/blms/12.6.476b}{doi} \item [[Daniel Huybrechts]], \emph{Fourier-Mukai transforms in algebraic geometry}, Oxford Mathematical Monographs. 2006. 307 pages. \item J. S. Milne, \emph{Abelian varieties}, course notes, \href{http://www.jmilne.org/math/CourseNotes/AV.pdf}{pdf} \item David Mumford, \emph{Abelian varieties}, Oxford Univ. Press 1970. \item [[Alexander Polishchuk]], \emph{Abelian varieties, theta functions and the Fourier transform}, Cambridge Univ. Press 2003. \item Goro Shimura, \emph{Abelian varieties with complex multiplication and modular functions}, Princeton Univ. Press 1997. \item [[AndrĂ© Weil]], \emph{Courbes alg\'e{}briques et vari\'e{}t\'e{}s ab\'e{}liennes}, Paris: Hermann 1971 \end{itemize} In [[E-infinity geometry]]: \begin{itemize}% \item [[Jacob Lurie]], \emph{Elliptic Cohomology I: Spectral Abelian Varieties} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf}{pdf}) \end{itemize} For a discussion of how the rigidity lemma gives `automatic abelianness' see: \begin{itemize}% \item \href{https://golem.ph.utexas.edu/category/2016/08/the_magic_of_algebraic_geometr.html}{Two miracles in algebraic geometry}, \emph{The n-Category Caf\é}. \end{itemize} [[!redirects abelian varieties]] [[!redirects abelian group scheme]] [[!redirects abelian group schemes]] \end{document}